STORMWATER MANAGEMENT, GROUNDWATER RECHARGE AND WATER QUALITY ANALYSIS

For

Surfside Crossing
Proposed Multi-Family Mixed Use Building

1102 9th Ave
Block 405, Lot 5-7
Neptune Township
Monmouth County, NJ

Prepared by:

826 Newtown Yardley Road Suite 201
Newtown, PA 18940
(267) 685-0276

Steven R. Cattani, PE, CME, CFM
NJ Professional Engineer License \#40014
REV 2 - April 2023
DEC\# 2241-99-002

TABLE OF CONTENTS

Page No.
I. Site Description 2
II. Design Overview 2
III. Existing Drainage Conditions 4
IV. Proposed Drainage Conditions 6
V. Non-Structural Stormwater Management Strategies 6
VI. Design Methodology. 7
VII. Stormwater Management Basin Design and Runoff Quantity Standards. 8
VIII. Groundwater Recharge \& Water Quality. 9
IX. Stability Analysis. 10
X. Conclusion. 11

APPENDIX

1. USGS Map
2. NRCS Soils Map
3. Runoff Curve Number (CN) Calculations - Existing
4. Runoff Curve Number (CN) Calculations - Proposed
5. Existing Time of Concentration (Tc) Calculations
6. Hydrograph Summary Reports -Existing \& Proposed WQ, 2 yr., 10 yr., 25 yr. \& 100 yr.
7. Hydrograph Summary Reports - Emergency Spillway
8. Hydrograph Summary Reports - Stability Analysis
9. Stormwater Collection Calculation (Pipe Sizing)
10. Infiltration Basin Drain Time
11. Runoff Rate Reductions
12. NJGRS Spreadsheets
13. Drainage Area Maps

I. SITE DESCRIPTION

The project site consists of Block 405, Lots 5-7, located at the intersection of $9^{\text {th }}$ Ave, Memorial Drive, and $8^{\text {th }}$ Ave. in Neptune Township, Monmouth County, New Jersey. Currently, the site is mostly open with wooded areas towards the central portion of the combined lots. In addition, the site currently has two single-family homes located of existing lot 7 . The subject site is 79,034 square feet (1.81 acres). The site is bordered to the north by $9^{\text {th }}$ Ave; to the east Memorial Drive; to the south $8^{\text {th }}$ Ave, and the west by residential uses. The project consists of developing the parcel with a proposed multi-family mixed use building totaling 120,000 square feet over multiple floors. The building includes 53 residential units, and $7,181 \mathrm{SF}$ of retail with one hundred and thirty (119) total passenger surface vehicle parking spaces, driveways, landscaping and other related site improvements.

The existing conditions of the tract have been verified by the Alta/ NSPS Land Title Survey, prepared by Dynamic Survey, LLC, dated 3/30/2022.

II. DESIGN OVERVIEW

This report has been prepared to define and analyze the stormwater drainage conditions that would occur as a result of the development of Block 405, Lots 5-7 in Neptune Township, Monmouth County, New Jersey. The project includes new stormwater management facilities to address applicable aspects of Neptune Township Stormwater Management rules and NJAC 7:8.

Based upon the fact that the proposed improvements will result in more than one (1) acre of land disturbance and increase the amount or impervious coverage by more than 0.25 acres , this project is classified as a "major development"; and therefore, has been designed to meet the stormwater runoff quantity, quality and groundwater recharge standards, set forth by Neptune Township Land Use Ordinance and NJAC 7:8. Accordingly, the following items are addressed within this report:

- Erosion control, groundwater recharge and runoff quantity standards (7:8-5.4)
- \quad Stormwater runoff quality standards (7:8-5.5)
- Calculation of stormwater runoff and groundwater recharge (7:8-5.6)
- Standards for structural stormwater management measures (7:8-5.7)

The scope of the report includes the proposed multi-family dwelling, basins, driveways, parking areas, landscaping and other related site improvements as shown on the engineering drawings. The proposed overall site plan contains 74.3% impervious lot coverage. The storm systems on site have been designed using this coverage.

A hydrological evaluation is provided for the NJDEP Water Quality, 2, 10, 25, and 100-year storm events utilizing the Urban Hydrology for Small Watersheds TR55 method.

NJAC 7:8-5.4(a)3 states the stormwater quantity impacts can be calculating to meet one the of the following below:
i. Demonstrate through hydrologic and hydraulic analysis that for stormwater leaving the site, post-construction runoff hydrographs for the 2, 10 and 100-year storm events do not exceed, at any point in time, the pre-construction runoff hydrographs for the same storm events;
ii. Demonstrate through hydrologic and hydraulic analysis that there is no increase, as compared to the pre-construction condition, in the peak runoff rates of stormwater leaving the site for the two, 10 and 100-year storm events and that the increased volume or change in timing of stormwater runoff will not increase flood damage at or downstream of the site. This analysis shall include the analysis of impacts of existing land uses and projected land uses assuming full development under existing zoning and land use ordinances in the drainage area;
iii. Design stormwater management measures so that the post-construction peak runoff rates for the two, 10 and 100-year storm events are 50, 75 and 80 percent, respectively, of the pre-construction peak runoff rates. The percentages apply only to the post-construction stormwater runoff that is attributable to the portion of the site on which the proposed development or project is to be constructed.

Per the above requirements, runoff from the site will comply with the flow reductions indicated under iii as follows:

2-year:	50% reduction
10-year:	25% reduction
100-year:	20% reduction

This facility will comply with the Stormwater Management Best Management Practices.

It is important to note that the aforementioned flow reduction requirements are only required to be applied to onsite drainage areas within the limit of disturbance to satisfy Neptune Township and NJDEP flow reduction requirements. Therefore, the proposed development satisfies the flow reduction requirements by applying the peak rate reduction requirements only to the onsite areas that are proposed to be disturbed, all remaining undisturbed areas on site will continue to discharge under their existing condition.

III. EXISTING DRAINAGE CONDITIONS

The tract has been evaluated with the following drainage sub-watershed areas as depicted on the Existing Conditions Drainage Area Map that can be found in the appendix of this report.

Existing Drainage Area 1: This study area is comprised of mostly grassed areas with portions of the existing asphalt driveways and single-family home. It is analyzed as an area to be disturbed as a result of the proposed development. The stormwater runoff currently flows from the eastern portion of the site to the western end of the property towards the existing ' B ' inlet located on $8^{\text {th }}$ Avenue, also known as POA 2.

Existing Drainage Area 2: This study area is comprised of mostly grassed and wooded areas with a portion of the existing asphalt driveways and single-family homes. It is analyzed as an area to be disturbed as a result of the proposed development. The stormwater runoff currently flows from the eastern portion of the site to the western end of the property towards the existing low point located offsite at the rear of the adjacent lot 4 . From this low point, runoff flows toward the existing ' B ' inlet located on $9^{\text {th }}$ Avenue, also known as POA 1.

Existing Drainage Area 3: This study area is comprised of mostly grassed and wooded areas. It is analyzed as an area to be disturbed as a result of the proposed development. The stormwater runoff currently flows from the eastern portion of the site to the western end of the property towards the existing ' B ' inlet located on $9^{\text {th }}$ Avenue, also known as POA 1.

Existing Bypass to Memorial Drive: This study area is comprised of mostly grassed areas. It is analyzed as an area to be minimally disturbed as a result of the proposed development. The stormwater runoff currently flows from the southern portion of the site to the northeastern side of the property towards the existing ' B ' inlet located on Memorial Drive, also known as POA 3.

Based on the Monmouth County soils survey information, the soil types native to the site include:

MONMOUTH COUNTY SOIL SURVEY INFORMATION				
SOIL TYPE (SYMBOL)	SOIL TYPE (NAME)	HYDROLOGIC SOIL GROUP	DEFAULT SOIL TYPE (NAME)	DEFAULT HYDROLOGIC SOIL GROUP
UR	Urban Lands	N/A	Fort Mott	A

Per the NJ Stormwater BMP Manual Chapter 12 Soil Testing Criteria, sites that do not have a Hydrologic Soil Group can be defined as Fort Mott, HSG A, as the site is within the Coastal Plain. The soil investigation completed by Dynamic Earth, LLC, confirms the site should be examined using HSG A by completing five (5) permeability tests that show permeability rates consistent with HSG type A soils. The soil borings and soil profile pits generally encountered deep fill material and loose natural soils near the proposed building footprint. Topsoil was encountered between approximately five inches and ten inches of topsoil at the surface. Beneath the surficial cover, existing fill materials were encountered that generally consisted of sand, loamy
sand, sandy loam, and clay with variable amounts of gravel and debris. The debris encountered included brick, metal, pvc, glass, seashells, concrete, and asphalt. The existing fill materials were encountered to depths ranging between approximately 2.5 feet and 5.5 feet below the ground surface; corresponding to elevations ranging between 12.2 feet and 7.6 feet. Beneath the existing fill materials, natural soils were encountered that generally consisted of sand, sandy loam, loam sandy clay loam, silty clay loam, clay loam, silty clay, and clay with variable amounts of gravel. The natural soils were encountered to termination and refusal depths ranging between approximately 10 feet and 12.4 feet below the ground surface; corresponding to elevations ranging between 4.5 feet and 0.7 feet. The refusal encountered was due to continuous wet cave-in of coarse-grained materials.

Indicators of seasonal high groundwater (based on soil mottling and/or direct groundwater observations during the wet season) were encountered at depths ranging between approximately 2.5 feet and 4.6 feet below the ground surface; corresponding to elevations ranging between 12.2 feet and 8.8 feet. Groundwater was encountered at depths ranging between approximately five feet and seven feet below the ground surface; corresponding to elevations ranging between 10.5 feet and 7.5 feet. Groundwater levels are expected to fluctuate seasonally and following significant periods of precipitation. A summary of seasonal high groundwater levels encountered and permeability samples collected is presented in the chart below:

Seasonal High Groundwater and Permeability Test Summary						
Location	Surface Elevation (ft)	Estimated Seasonal High Groundwater		Sample Depth (Inches)	Permeability Results (inches/hour)	
		Depth (ft)	Elevation (ft)		Replicate A	Replicate B
SPP-1	14.7	2.5	12.2	18	Not Tested	
				40		
SPP-2	13.4	4.6	8.8	44		
				78		
SPP-3	13.1	3.3	9.8	24	8.9	7.5
				45	Not Tested	
				70		
SPP-4	13.1	3.0	10.1	24	6.5	13.8
				42	Not Tested	
				100		
SPP-5	13.9	4.0	9.9	24	12.5	6.6
SPP-6	13.2	3.8	9.4	32	>20	>20
				50	Not Tested	
SPP-7	14.5	4.2	10.3	30	14.4	18.7
				50	Not Tested	
SPP-8	13.3	3.9	9.4	36		
				60		
SPP-9	12.9	4.0	8.9	36		

Based on the laboratory testing completed and the subsurface conditions encountered at soil profile pit excavations, the soils encountered are generally consistent with a hydraulic soil group (HSG) A.

IV. PROPOSED DRAINAGE CONDITIONS

The tract has been evaluated with the following drainage sub-watershed areas as depicted on the Contributory Drainage Area Map that can be found in the appendix of this report. Each sub-watershed area has been calculated as a separate point of analysis.

Proposed Drainage Area 1: This portion of the site consists of parking lot runoff. Stormwater runoff from this area flows through multiple curb cuts to the proposed above ground recharge area. Stormwater in this area is designed to infiltrate up to and including the $100-\mathrm{yr}$ storm.

Proposed Study Area 2: This portion of the site mainly consists of the building roof runoff with some runoff from the proposed parking lot. Stormwater runoff from this area is collected by a series of roof leaders which flows to the proposed above ground small-scale infiltration basin 2. Stormwater discharged from basin 2 flows through the outlet control structure to the subsurface small-scale infiltration basin 3 .

Proposed Study Area 3: This portion of the site consists of the majority of the impervious surfaces on the site including the porous pavement, asphalt, and portions of the landscaped areas. Runoff from this drainage area sheet flows to the proposed porous pavement and then to the subsurface small-scale infiltration basin 3 . Stormwater discharged from basin 3, flows through the outlet control structure to the existing ' B ' inlet on $9^{\text {th }}$ Avenue, also known as POA 1.

Proposed Bypass $8^{\text {th }}$ Ave: This portion of the site consists of a minimal portion of the asphalt driveway and adjacent grassed areas. Runoff from this area flows undetained to the existing ' B ' inlet on $8^{\text {th }}$ Avenue, also known as POA 2.

Proposed Bypass $9^{\text {th }}$ Ave: This portion of the site consists of a minimal portion of the asphalt driveway and adjacent grassed areas. Runoff from this area flows undetained to the existing ' B ' inlet on $9^{\text {th }}$ Avenue, also known as POA 1.

Proposed Bypass Memorial Drive: This portion of the site consists of a minimal portion of the concrete sidewalk and adjacent grassed areas. This area is essentially unchanged from its existing condition. Runoff from this area flows undetained to the existing ' B ' inlet on Memorial Drive also known as POA 3.

V. NON-STRUCTURAL STORMWATER MANAGEMENT STRATEGIES

The proposed project has been designed to the maximum extent practicable by incorporating the nonstructural stormwater management strategies set forth in NJAC 7:8-5.3 as follows:

1. Protect areas that provide water quality benefits or areas particularly susceptible to erosion and sediment lost: The proposed impervious surface is minimized wherever possible under the proposed condition; therefore, increasing the water quality benefits on the site. By implementation of the porous pavement and infiltration basins, the proposed development meets the water quality requirements set forth by NJAC 7:8.
2. Minimize impervious surfaces and break up or disconnect the flow of runoff over impervious surfaces: The impervious surfaces have been minimized wherever possible. Impervious surfaces have been diverted to multiple structural BMPs capable of providing water quality treatment.
3. Maximize the protection of natural drainage features and vegetation: In the proposed condition, there is an increase in impervious coverage. A Landscaping Plan has been prepared to compensate for the loss of existing vegetation due to the development.
4. Minimize the decrease in the "time of concentration" from pre-construction to post-construction. "Time of concentration" is defined as the time it takes for runoff to travel from the hydraulically most distant point of the drainage area to the point of interest within a watershed: The decrease in the time of concentration has been minimized by maintaining existing overland flow slopes to the maximum extent practical.
5. Minimize land disturbance including clearing and grading: Land disturbance has been minimized where feasible. The site disturbance is limited to the development area.
6. Minimize soil compaction: Soil compaction will be minimized in the basins and proposed lawn and landscape areas.
7. Provide low-maintenance landscaping that encourages retention and planting of native vegetation and minimizes the use of lawns, fertilizers and pesticides: The project proposes low-maintenance trees, shrubs, and ground cover on the site. Refer to the Landscape Plan for plant information.
8. Provide vegetated open-channel conveyance systems discharging into and through stable vegetated areas: Due to the site constraints, it is not feasible to design a vegetated open-channel conveyance system on this project.
9. Provide other source controls to prevent or minimize the use or exposure of pollutants at the site in order to prevent or minimizes the release of those pollutants into stormwater runoff: The proposed small-scale infiltration basins provide 80% TSS removal. In addition, the porous pavement will provide 80% TSS removal prior to discharging to basin 3 . Basin 3 will provide additional water quality measures due to infiltration.

VI. DESIGN METHODOLOGY

The intention of the proposed stormwater management facilities for this project is to comply with applicable required measures from Neptune Township Land Use Ordinance and NJAC 7:8. In order to prepare the stormwater calculations for the subject project, an investigation of the property and topography was
performed. An on-site review of the tract was performed by Dynamic Engineering Consultants, PC, verifying the existing site conditions and land cover characteristics. Dynamic Survey was contracted to prepare the ALTA/NSPS Land Title Survey for the existing site.

Based on our review of the existing site conditions and the Topographic Survey, the Drainage Area Maps for the existing and proposed site conditions as defined within this report were established. A grading plan was developed for the proposed site improvements with consideration to the existing drainage patterns. The plan was then designed to ensure runoff from the proposed development could be directed to stormwater management facilities to the maximum extent practicable in order to address the applicable sections of Neptune Township Stormwater Management rules and NJAC 7:8.

The above ground small-scale infiltration basin will temporarily store stormwater runoff from the site. An outlet control structure for basin 2 has been implemented to release stormwater runoff at a controlled rate to satisfy the stormwater quantity requirements, the parking lot recharge area is designed to infiltrate up to and including the $100-\mathrm{yr}$ storm. Overflow from the above ground basin 2 is routed via the emergency spillway to the existing downstream stormwater management facilities. The above ground infiltration basins have been designed to meet the requirements set forth by NJAC 7:8.

The porous pavement drains to a subsurface small-scale infiltration basin that temporarily stores and attenuates stormwater runoff from the site. An outlet control structure has been implemented to release stormwater runoff at a controlled rate to satisfy the stormwater quantity requirements. The subsurface smallscale infiltration basin has been designed to meet the recharge requirements set forth by NJAC 7:8.

According to the NJAC 7:8-5.5(a), a TSS removal rate of 80% is required for stormwater runoff generated from vehicular pavement areas as a result of a major development. By the use of small-scale infiltration basins, and porous pavement, the proposed site meets the 80% TSS removal.

VII. STORMWATER MANAGEMENT BASIN DESIGN AND RUNOFF QUANTITY STANDARDS

In order to meet the stormwater runoff quantity and water quality requirements set forth in NJAC 7:8, the site design incorporates porous pavement, a subsurface small-scale infiltration basin, and one (1) above ground small-scale infiltration basin, and one (1) recharge area. Runoff from a portion of the roof area flows through a series of roof leaders to the above ground small-scale infiltration basin 2. Discharge from basin 2 flows through the stormwater conveyance systems to the subsurface small-scale infiltration basin 3. Additional runoff to basin 3 flows over land by sheet flow to the pervious paving areas, filters through the pervious paving and is then collected by the subsurface small-scale infiltration basin 3 . Outflow from basins 2 and 3 is combined and routed to the existing ' B ' inlet on $9^{\text {th }}$ Avenue, also known as POA 1.

Minimal areas adjacent to each road frontage will have runoff that is undetained to each POA. It is important to note that the impervious surfaces that bypass to each POA are less in the proposed condition as compared to existing. An outline of the Drainage Areas is located in the Runoff Curve Number (CN) Calculations Existing \& Proposed in the appendix of the report.

A summary of the pre and post development flows are shown in the charts below:

Pre-development and Post Development Peak Runoff Results

PRE VS. POST SUMMARY CHART (FLOW TO POA 1)							
DESIGN	EXISTING DISTURBED AREA (CFS)	HYDRO- GRAPH $\#$	RUNOFF RATE REDUCTION OF DISTURBED AREA	MAXIMUM TOTAL ALLOWABLE RUNOFF RATE (CFS)	PROPOSED RUNOFF RATE (CFS)	HYDRO- GRAPH (CRM	
2 Year	0.17	18	50%	0.09	0.09	2	
10 Year	0.27	18	25%	0.20	0.13	22	
100 Year	1.58	18	20%	1.26	0.43	22	

PRE VS. POST SUMMARY CHART (FLOW TO POA 2)

PRE VS. POST SUMMARY CHART (FLOW TO POA 2)							
DESIGN	EXISTING DISTURBED STORM	HYDRO- GRAPH $\#$	RUNOFF RATE REDUCTION OF DISTURBED AREA	MAXIMUM TOTAL ALLOWABLE RUNOFF RATE (CFS)	PROPOSED RUNOFF RATE (CFS)	HYDRO- GRAPH \#	
2 Year	0.10	10	50%	0.05	0.05	3	
10 Year	0.16	10	25%	0.12	0.09	33	
100 Year	0.31	10	20%	0.25	0.21	33	

VIII. GROUNDWATER RECHARGE \& WATER QUALITY

As required by NJAC 7:8-5.5, a TSS removal rate of 80% is required for stormwater generated by the water quality design storm as a result of a major development. The design for the subject development meets the obligation for TSS removal by utilizing porous pavement, one (1) subsurface infiltration basin, and two (2) above ground infiltration basins.

Nine (9) test pits have been conducted for the four (4) BMP's on site; however, only eight (8) pits will be used in design of the BMP's. SPP-2 and -3 were used in designing the parking lot recharge area, which has a bottom area of 355 SF. SPP-6 and -7 were used in designing Basin 2, which has a basin bottom area of 678 SF. SPP-2, -3 , and -9 were used in designing Basin 3 which has an area of 11,044 SF. Lastly, the pervious pavement was designed using SPP-8 and -3 , which has an area of $6,450 \mathrm{SF}$. See soil pit testing results in Section III of this report for further information.

Recharge: The Post-Development Annual Recharge Deficit has been calculated using the New Jersey Groundwater Recharge Spreadsheet. Per the NJGRS Spreadsheet and soils investigation, the site development
does not result in a recharge deficit. Refer to the NJ Groundwater Recharge Spreadsheet in the Appendix of this report.

Water Quality: The stormwater management design for the project satisfies the requirements set forth in NJAC 7:8-5.5(a) by utilizing pervious paving and small-scale infiltration basins. The pervious pavement will provide the minimum TSS removal rate of 80%. Per NJDEP BMP Manual Chapter 9.6, pervious pavement provides an 80% TSS removal. The project meets the contributory drainage area requirement of $3: 1$ (drainage area to area of pervious pavement), with a maximum slope of less than 5%. For both of the above ground small-scale infiltration basins (\#4 \& \#2), the runoff for the water quality storm is infiltrated. Additionally, the stormwater will be evacuated from the infiltration basins within 72 hours. As a result, the water quality requirements of the Neptune Township Land Development Ordinance and NJAC 7:8 are met.

IX. STABILITY ANALYSIS

Per the NJ Soil Erosion Standards, Section 21, "Standard for Off-Site Stability," compliance has been met for the site. The conditions of the NJ SESC Standards Section 21-1 have been satisfied using the point of discharge method with a well-defined channel.
a. Retain pre-developed runoff characteristics. Do not increase the rate of runoff from development. Discharge rates from the proposed stormwater improvements are below the flow rates in the existing conditions; therefore method ' b ' below will be used.
b. Analyze the waterway or channel for stability under the planned rate of discharge using the Standard for Grassed Waterways or Standard for Chanel Stabilization, as appropriate. Peak flows from the 2 - and 10 -year storms shall be analyzed. The 2 - and 10 -year storms have existing peak flowrates of 0.17 cfs and 0.27 cfs , respectively. The proposed conditions, during the stability analysis, meets the requirements set forth in the Standard for Channel Stabilization by not exceeding the maximum flow rates for the existing 12 " pipe at POA 1 . A summary of the flow rates are shown in the chart below:

PRE VS. POST SUMMMARY CHART (STUDY POINT - STABILITY)			
$\underline{\text { Design }}$	$\underline{\text { Existing Runoff }}$	$\underline{\text { Proposed Runoff Rate }}$	Proposed Pipe Velocity (fps)
$\underline{\text { Storm }}$	$\underline{\text { Rate (CFS) }}$	$\underline{\text { (CFS) }}$	$\underline{4.0}$
2 Year	0.17	0.40	5.5
10 Year	0.27	1.27	

c. Modify the waterway or channel to a stable design condition. The combined flows to the existing stormwater facilities show that the proposed flow rates are in a stable condition as the discharge rate is lower than the maximum allowable flow rate in the existing 12 " pipe.

X. CONCLUSION

The proposed overall development has been designed with provisions for the safe and efficient control of stormwater runoff in a manner that will not adversely impact the existing drainage patterns, adjacent roadways, or adjacent parcels. The 80% TSS removal obligations set forth by NJAC $7: 8$ have been satisfied by utilizing two (2) infiltration basins, recharge area, and pervious pavement. Recharge requirements are met utilizing the subsurface small-scale infiltration basin.

With this stated, it is evident that the proposed development will not have a negative impact on the existing drainage pattern, water quality, or groundwater recharge on site or within the vicinity of the subject parcel.

APPENDIX

USGS MAP

NRCS SOILS MAPS

Кәл」əг

 The National Cooperative Soil Survey is a joint effort of the United States

 cid＝nrcs142p2＿053951）．

 protect，or enhance the environment．

әэелә．」

 characteristics with precisely defined limits. The classes are used as a basis for
comparison to classify soils systematically. Soil taxonomy, the system of taxonomic properties, he soil scientists assigned the soils to taxonomic classes (units
Taxonomic classes are concepts. Each taxonomic class has a set of soil to identify soils. After describing the soils in the survey area and determining their noted soil color, texture, size and shape of soil aggregates, kind and amount of rock
fragments, distribution of plant roots, reaction, and other features that enable them Soil scientists recorded the characteristics of the soil profiles that they studied. The

 Commonly, individual soils on the landscape merge into one another as their
characteristics gradually change. To construct an accurate soil map, however, soil specific location on the landscape were formed. Thus, during mapping, this model enables the soir scientist to predict
with a considerable degree of accuracy the kind of soil or miscellaneous area at a
 of landform or with a segment of the landform. By observing the soils and
miscellaneous areas in the survey area and relating their position to specific

 areas typically consist of parts of one or more MLRA.
 areas (MLRAs). MLRAs are geographically associated land resource units that
share common characteristics related to physiography, geology, climate, water Currently, soils are mapped according to the boundaries of major land resource devoid of roots and other living organisms and has not been changed by other
biological activity.

 areas in a specific area. They include a description of the soils and miscellaneous
areas and their location on the landscape and tables that show soil properties and Soil surveys are made to provide information about the soils and miscellaneous

әреW ә.J sKəл..ns I!OS моН

 әपł U! !!OS fo sə!poq lextłeu łueJ!!

 kinds of soil. are assembled from farm records and from field or plot experiments on the same

 soils under different uses. Interpretations for all of the soils are field tested through
 are collected for laboratory analyses and for engineering tests. Soil scientists
interpret the data from these analyses and tests as well as the field-observed
 properties.

 typically vary from one point to another across the landscape. ।!

 soil-landscape model and predictions and to verify the classification of the soils at
specific locations. Once the soil-landscape model is refined, a significantly smaller

 landforms and landform segments on the map provides sufficient information for the
development of resource plans. If intensive use of small areas is planned, onsite of the map unit. The presence of minor components in a map unit in no way
diminishes the usefulness or accuracy of the data. The delineation of such proportions. Some components may be highly contrasting to the other components

displayed on the map. Also presented are various map unit.
The soil map sectio
soil map units on th
The soil map section
dew IIOS

Custom Soil Resource Report

 was impractical to make enough observations to identify all the soils and
miscellaneous areas on the landscape.

 particular map unit description. Other minor components, however, have properties
and behavioral characteristics divergent enough to affect use or to require different

suo! !!!ıэsəa t!un dew

риәбәา ! !un dew

up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.
Some surveys include miscellaneous areas. Such areas have little or no soil
material and support little or no vegetation. Rock outcrop is an example.

 pattern and relative proportion of the soils or miscellaneous areas are somewhat or anticipated uses of the map units in the survey area, it was not considered
 in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example. pattern or in such small areas that they cannot be shown separately on the maps.
The pattern and proportion of the soils or miscellaneous areas are somewhat similar

 Soils of one series can differ in texture of the surface layer, slope, stoniness,
salinity, degree of erosion, and other characteristics that affect their use. On
 Soils that have profiles that are almost alike make up a soil series. Except for
differences in texture of the surface layer, all the soils of a series have major properties and qualities

detail/national/landuse/rangepasture/?cid=stelprdb1043084
United States Department of Agriculture, Natural Resources Conservation Service.
National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ home/?cid=nrcs142p2_053374

 Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service

 Federal Register. September 18, 2002. Hydric soils of the United States.
 wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife
Service FWS/OBS-79/31. „о ио!!еэы!

 səэиəләృәу
Custom Soil Resource Report

RUNOFF CURVE NUMBER (CN) CALCULATIONSEXISTING

Existing Drainage Area Summary and Average Curve Number(CN) Calculations

Project:	Surfside Crossing Multi-Family Development
Job \#:	$2241-99-002$
Location:	Memorial Drive \& 8th Ave, Neptune, Nj

Drainage Area	Impervious Area (acre)	Impervious Area (sf)	Curve Number (CN) Used	HSG A Open Space Area (acre)	HSG A Open Space Area (sf)	Curve Number (CN) Used	HSG A - Wooded Area (acre)	HSG A - Wooded Area (sf)	Curve Number (CN) Used	Avg. Perv. Curve Number	Total Pervious Area (acres)	Total Area (acres)	TC (Min.)
DA 1-8TH AVE	0.04	1,631	98	0.04	1,655	39	0.01	463	30	37	0.05	0.09	10
DA 2 - LOW POINT	0.08	3,695	98	0.58	25,241	39	0.28	12,397	30	36	0.86	0.95	12
DA 3-9TH AVE	0.00	-	98	0.62	26,997	39	0.13	5,783	30	37	0.75	0.75	10
BYPASS - MEMORIAL	0.00	-	98	0.03	1,176	39	0.00	-	30	39	0.03	0.03	10
Total	0.12	5326.00		1.26	55069.00		0.43	18643.00			1.67	1.81	

RUNOFF CURVE NUMBER (CN) CALCULATIONSPROPOSED

Proposed Dranage Area Summary and Average Curve Number(CN) Calculations

EXISTING TIME OF CONCENTRATION (Tc) CALCULATIONS

Worksheet 3: Time of Concentration (T_{ε}) Calculations

Land Condition:	Existing
Drainage Area:	DA -1

- Sheet Flow:

1. Surface Description
2. Manning's Roughness Coefficient, n
3. Flow Length, L \{ total $L \leq 100 \mathrm{ft}\}$
4. Two-Year 24-hour Rainfall, p_{2} for ... Monmouth County
5. Land Slope, s (ft/ft)
6. Travel Time, $T_{t}=\frac{0.007(n L)^{0.8}}{p_{2}^{0.5} \mathrm{~s}^{0.4}}$

AB						
Range (natural)						
0.13						
100.0 ft						
3.38 in		3.38 in				
$0.016 \mathrm{ft} /$						
0.155 hr	+	0.000 hr	+	0.000 hr	=	0.155 hr

- Shallow Concentrated Flow:

7. Surface Description
8. Flow Length, L
9. Watercourse Slope, s
10. Average velocity, V \{ see Figure 3.1)
11. Travel Time, $T_{t}=$ \qquad

BC	CD	DE		
Unpaved	Paved	Unpaved		
12.0 ft	15.6 ft	37.0 ft		
$0.014 \mathrm{ft} / \mathrm{ft}$	$0.014 \mathrm{ft} / \mathrm{ft}$	$0.014 \mathrm{ft} / \mathrm{ft}$		
$1.91 \mathrm{ft} / \mathrm{s}$	$2.41 \mathrm{ft} / \mathrm{s}$	$1.91 \mathrm{ft} / \mathrm{s}$		
0.002 hr	+0.002 hr	+0.005 hr		

Channel Flow :

12. Pipe Diameter, D
13. Cross-Sectional Flow Area, A
14. Wetted Perimeter, p_{w}
15. Hydraulic Radius, $r=A / p_{w}$
16. Channel Slope, s
17. Pipe Material
18. Manning's Roughness Coefficient, n
19. Velocity, $V=\frac{1.49 r^{2 / 3} s^{1 / 2}}{n}$
20. Flow Length, L
21. Travel Time, $T_{t}=\frac{L}{3600 ~ V}$

22. Watershed or subarea Time of Concentration, T_{c} \{ add T_{t} in steps 6, 11 and 21$\}$

Worksheet 3: Time of Concentration (T_{ε}) Calculations

Land Condition:	Existing
Drainage Area:	DA -2

- Sheet Flow :

1. Surface Description
2. Manning's Roughness Coefficient, n
3. Flow Length, L \{ total $L \leq 100 \mathrm{ft}\}$
4. Two-Year 24-hour Rainfall, p_{2} for . . . Monmouth County
5. Land Slope, s (ft/ft)
6. Travel Time, $T_{t}=\frac{0.007(n L)^{0.8}}{p_{2}^{0.5} \mathrm{~s}^{0.4}}$

Shallow Concentrated Flow :

7. Surface Description
8. Flow Length, L
9. Watercourse Slope, s
10. Average velocity, V \{ see Figure 3.1)
11. Travel Time, $T_{t}=$ \qquad L

Channel Flow :

12. Pipe Diameter, D
13. Cross-Sectional Flow Area, A
14. Wetted Perimeter, p_{w}
15. Hydraulic Radius, $r=A / p_{w}$
16. Channel Slope, s
17. Pipe Material
18. Manning's Roughness Coefficient, n
19. Velocity, $V=\frac{1.49 r^{2 / 3} s^{1 / 2}}{n}$
20. Flow Length, L
21. Travel Time, $T_{t}=\frac{L}{3600 ~ V}$

22. Watershed or subarea Time of Concentration, $T_{c}\left\{\right.$ add T_{t} in steps 6, 11 and 21$\}$

Worksheet 3: Time of Concentration (T_{ε}) Calculations

Land Condition:	Existing
Drainage Area:	DA -3

- Sheet Flow :

1. Surface Description
2. Manning's Roughness Coefficient, n
3. Flow Length, L \{ total $L \leq 100 \mathrm{ft}\}$
4. Two-Year 24-hour Rainfall, p_{2} for . . . Monmouth County
5. Land Slope, s (ft/ft)
6. Travel Time, $T_{t}=\frac{0.007(n L)^{0.8}}{p_{2}^{0.5} \mathrm{~s}^{0.4}}$

AB								
Range (natural)								
0.13								
100.0 ft								
3.38 in		3.38 in		3.38 in				
$0.025 \mathrm{ft} / \mathrm{ft}$								
0.130 hr	+	0.000 hr	+	0.000 hr	$=$	0.130 hr		

Shallow Concentrated Flow :

7. Surface Description
8. Flow Length, L
9. Watercourse Slope, s
10. Average velocity, V \{ see Figure 3.1)
11. Travel Time, $T_{t}=$ \qquad L

BC			
Unpaved			
233.0 ft			
$0.009 \mathrm{ft} / \mathrm{ft}$			
$1.56 \mathrm{ft} / \mathrm{s}$			

Channel Flow :

12. Pipe Diameter, D
13. Cross-Sectional Flow Area, A
14. Wetted Perimeter, p_{w}
15. Hydraulic Radius, $r=A / p_{w}$
16. Channel Slope, s
17. Pipe Material
18. Manning's Roughness Coefficient, n
19. Velocity, $V=\frac{1.49 r^{2 / 3} s^{1 / 2}}{n}$
20. Flow Length, L
21. Travel Time, $T_{t}=\frac{L}{3600 ~ V}$

22. Watershed or subarea Time of Concentration, $T_{c}\left\{\right.$ add T_{t} in steps 6, 11 and 21$\}$

HYDROGRAPH SUMMARY REPORTS EXISTING \& PROPOSED
WQ, 2 YR., 10 YR., 25 YR. \& 100 YR.

