

DEPARTMENT OF TRANSPORTATION P.O. Box 600 Trenton, New Jersey 08625-0600

CHRIS CHRISTIE

Governor

JAMIE FOX Commissioner

KIM GUADAGNO Lt. Governor

May 26, 2015

Mr. Richard Cuttrell Clerk, Neptune Township 25 Neptune Blvd. Neptune, NJ 07753

RE: Waterfront Development Permit/WQC/AUD Application Shark River Channel (#038) - Maintenance Dredging Shark River Spur (#039) - Maintenance Dredging Borough of Belmar, Monmouth County Borough of Neptune City, Monmouth County Neptune Township, Monmouth County

Dear Mr. Cuttrell:

This letter is to provide you with legal notification that an application will be submitted to the New Jersey Department of Environmental Protection (NJDEP) Office of Dredging and Sediment Technology for a permit for the proposed dredging project shown on the enclosed plan.

Three copies of the complete permit application are enclosed for your file and your review. Please distribute one copy to the planning board and one copy to the environmental commission. The third copy shall be maintained in the clerk's office and be made available for public review.

The NJDEP welcomes comments and any information that you and/or the public may provide concerning the proposed maintenance dredging project. Please submit your written comments within 15 days of receiving this letter to:

New Jersey Department of Environmental Protection Office of Dredging and Sediment Technology P.O. Box 420 Mail Code #401-06C Trenton, New Jersey 08625-0420

If you have any questions or need any additional information, please contact Joselyn Wall at (609) 530-4772 or by e-mail at <u>Joselyn.Wall@dot.nj.gov</u>.

Office of Maritime Resources

Enclosures

incerely.

DEPARTMENT OF TRANSPORTATION
P.O. Box 600
Trenton, New Jersey 08625-0600

CHRIS CHRISTIE

Governor

JAMIE FOX
Commissioner

KIM GUADAGNO

Lt. Governor

May 26, 2015

Suzanne U. Dietrick, Chief NJDEP - Office of Dredging and Sediment Technology 401 East State Street, 6th Floor P. O. Box 420, Mail Code#401-06C Trenton, NJ 08625

RE: Waterfront Development Permit Application
Shark River Channel (#038) - Maintenance Dredging
Shark River Spur (#039) - Maintenance Dredging
Borough of Belmar, Monmouth County
Borough of Neptune City, Monmouth County
Neptune Township, Monmouth County

Dear Ms. Dietrick:

The New Jersey Department of Transportation, Office of Maritime Resources is requesting a Waterfront Development Permit application to conduct maintenance dredging within the Shark River Channel (#038) and Shark River Spur (#039) State channels, Borough of Belmar, Borough of Neptune City, and Neptune Township, Monmouth County to restore the channels to the authorized project depth for safe navigation. Dredged material is proposed to be dewatered on an adjacent area as shown on the project plans.

Please find the following enclosed for your review and approval:

- 1. Division of Land Use Application (DLUR) Application Form;
- 2. Project Location Map;
- 3. Public Notice Information
 - Copy of Municipal Clerk notification letter w/certified mail receipt;
 - Copy of County Planning Board, County Environmental Commission, Municipal Construction Official and U.S. Army Corps of Engineers notification letters w/certified mail receipts;
 - Copy of Newspaper Ad (proof of publication will be provided upon receipt);
- Coastal Zone Management Compliance Statement (7 copies);
 May 6, 2015 Sediment Sampling Report (ASI Job #35-025) (1 hard copy and 1 electronic copy);
- 5. Copy of Tidelands Dredging License #0000-14-0005.1;

Suzanne Dietrick May 26, 2015 Page Two

6. Consents:

- Neptune Township's consent for dewatering location
- Belmar Borough's consent for dewatering location
- Monmouth County Landfill's consent for material placement; and
- 7. Site plans (7 sheets) (5 full size copies and 5 reduced size copies);

If you have any questions or need any additional information please contact Jo Wall at (609) 530-4772 or by e-mail at <u>Joselyn.wall@dot.ni.gov</u>.

Sincerely

Geneviève Clifton, Manager Office of Maritime Resources

Enclosures

c: Jodi McDonald, U.S. Corps of Engineers - New York District

Department of Environmental Protection
Division of Land Use Regulation Application Form (DLUR)
501 E. State Street Mail Code 501-02A P.O. Box 420
Trenton, NJ 08625-0420
Phone #: (609) 777-0454 Web: www.nj.gov/dep/landuse

PI	ease print legibly o	or type the following: Complete all sections unless otherwise noted	ls this projectSuperstorm Sandy Related Yes⊠No □
1.	Applicant Name:	Mr./Ms./MrsN.IDOT Office of Maritime Resources	E-Mail:
	Address:	1035 Parkway Avenue. P.O. Box 600	Daytime
	Phone:	Ext. Trenton. N.J. 08625	
	City/State:		Zip CodeCell
	Phone:	·	
2.	Agent Name:	Mr./Ms./Mrs. Scott Douglas	
	Firm Name:	NJDOT	E-Maii: SCOTT.DOUGLAS@dot.ni.gov
	Address:	1035 Parkway Ave	Daytime 609-530-4773
	Phone:	Ext	
	City/State:	· <u></u>	Zip Code <u>08625</u> Cell
	Phone:		Cell Phone:
3.	Property Owner:	Mr./Ms./MrsState of New Jersev - State Channel	E-mail:
	Address:	· · · · · · · · · · · · · · · · · · ·	Daytime Phone: Ext
٠.	City/State:		Zip CodeCell Phone:
4.	Project Name:	Shark River and Spur (038 & 039) – Maint. Dredgin	g Address/Location: Shark River Channel and Spur
	Municipality:	Neptune Township, Boro of Neptune City, Belmar Bor	
	Block(s):	n/a	Lot(s): n/a
		e Coordinates(feet) E (x): 620,555.4 N(y): 492,568.4	
	Watershed:	Whale Pond Bk / Shark R / Wreck Pond Subwa	
	Nearest Waterway:	Shark River	adanicu.
	Nealest Waterway.	n/a	
	Fees:	Total Fee:	Check #:Project Cost:
5.	Project Description:	This application is for a Waterfront Development P Channel and Spur to project depth including sedim	ermit for hydraulic maintenance dredging of the Shark River ent deposited by Superstorm Sandy. Dredged material
		consisting predominantly of silt/sand shall be hydra	ulically pumped to the dewatering site at Block 108 Lot 1
	Provide if applicable:		3 Lots 1 & 2 Township of Neptune, Monmouth County. Waiver request ID # (s):
	riovide il applicable.	rievious Lott i lie # (s).	
- А.	SIGNATURE OF APPL		= : = : = : = : = : = : = : = : = : = :
			d accurate. I am aware that there are significant civil and criminal penalties
	for submitting false o	r inaccurate information. If corporate entity, print/type the name ar	nd title of the person signing on behalf of the corporate entity.
	C 1	1 day	
	Signature of Applicant		Signature of Applicant
	5.7.	51	
	Genevieve Clir	fton Manager	Date
	Print Name	ivon, irranagei	Print Name
		· · · · · · · · · · · · · · · · · · ·	

B. PROPERTY OWNER'S CERTIFICATION

I hereby certify that the undersigned is the **owner of the property** upon which the proposed work is to be done. This endorsement is certification that the owner grants permission for the conduct of the proposed activity. In addition, I hereby give unconditional written consent to allow access to the site by representatives or agents of the Department for the purpose of conducting a site inspection(s) or survey(s) of the property in question.

In addition, the undersigned property owner hereby certifies:

1. Whether any work is to be done within an easement?	Yes⊡ No⊠
2. Whether any part of the entire project (e.g., pipeline, roadway, cable, t	transmission line, structure, etc.) will be located within
property belonging to the State of New Jersey?	Yes ⊠ No⊡
3. Whether any work is to be done on any property owned by any public	agency that would be encumbered by Green Acres? Yes□ No☑
4. Whether any part of this project requires a Section 106(National Regis	ster of Historic Places) Determination as part of a federal
permit or approval?	, Yes⊠No⊡
Ollifor	
Signature of Owner	Signature of Owner
Date	Date
Print Name	Print Name
Genevieve Clifton, Manager	
C. APPLICANT'S AGENT (Notary seal is required for Flood Hazard Area (FHA) applicati	ions)
I Genevieve Clifton , the Applicant/Owner and	, co-Applicant/Owner authorize to act
my agent/representative in all matters pertaining to my application the following	
Scott Douglas	
Name of Agent PROJECT MANAGER	Signature of Applicant/Owner
Occupation/Profession of Agent	Signature of co-Applicant/Owner
AGENT'S CERTIFICATION:	NOTARY:
I agree to serve as agent for the above-referenced applicant:	Sworn to me, this day of:
11 South hugh	,
Signature of Agent	Notary Public
D. STATEMENT OF PREPARER OF PLANS, SPECIFICATIONS,	E. STATEMENT OF PREPARER OF APPLICATION, REPORTS AND/OR
SURVEYOR'S OR ENGINEER'S REPORT	SUPPORTING DOCUMENTS (other than engineering)
I hereby certify that the plans, specifications and engineer's report, if any, applicable to this project	l certify under penalty of law that I have personall examined the information submitted in the document an
comply with the current rules and regulations of the	all attachments and that, based on my inquiry of those
New Jersey Department of Environmental Protection	individuals immediately responsible for obtaining and
with the exceptions as noted. In addition, I certify the	preparing the information, I believe that the information is
application is complete as per the appropriate	true, accurate and complete in accordance with the
checklist(s).	appropriate checklist(s). I am aware that there are
· /	significant penalties for submitting false information
	including the possibility of fines and imprisonment.
Man D deern	Ale SANA RUCCOL
Signature () James D. Heeren, PE	Signature Scott Douglas
Print Name Sentor Environmental Engineer, Dewberry	Print Name Project Manager/NJDOT
Position & Name of Firm 24GE04031000 May 26, 2015	Position & Name of Firm May 26, 2015
Professional License # Date	Professional License # Date Date

(If Applicable)

	CAFRA	Fee Amount	Fee Paid		Applicability Determination	Fee Amount	Fee Paid
	Individual Permit				Coastal Jurisdictional Determination	No Fee	No Fee
	Exemption Request	\$300.00			Highlands Jurisdictional Determination	No Fee	No Fee
	Permit Modification				Flood Hazard Area Applicability	No Fee	No Fee
	CAFGP5 / Amusement Pier Exp	\$600,00			Executive Order 215	No Fee	No Fee
	CAFGP6 / Beach/Dune Maintenance	\$600.00					
	CAFGP7 / Voluntary Reconstruction	\$600.00			Flood Hazard Area	Fee Amount	Fee Paid
	CAFGP8 / New Single Family or Duplex	\$600.00		0	FHA Verification		
	CAFGP9 / Reconstruct Single Fam/Dup	\$600.00			FHA Individual Permit		
	CAFGP10 / New Bulkhead/Fill Lagoon	\$600,00			FHA Hardship Exception	\$4,000.00	
	CAFGP11 / Revetment	\$600.00			FHAGP1 / Chan Clean w/o Sed Removal	No Fee	No Fee
	CAFGP12 / Gabions	\$600.00		╽┕	FHAGP1 / Chan Clean w/Sed Removal	No Fee	No Fee
	CAFGP13 / Support Facilities/ Marina	\$600.00			FHAGP2A / Ag - Bank Restoration	\$500.00	
	CAFGP14/Reconst Bulkhead above MHWL	\$600.00			FHAGP2B / Ag - Channel Cleaning	\$500.00	
	CAFGP15 / Hazard Waste Clean-up	\$600.00			FHAGP2C / Ag - Road Crossing	\$500.00	
0	CAFGP16 / Landfall of Utilities	\$600.00			FHAGP2D / Ag - Wetlands Restoration	\$500.00	
	CAFGP17 / Recreat Facility Public Park	\$600.00			FHAGP2E / Ag - Livestock Ford	\$500,00	
	CAFGP18 / BulkheadConstuct/Fill upland	\$600.00			FHAGP2F / Ag - Livestock Fence	\$500.00	
	CAFGP21 / Shoreline Stabilization	\$600.00			FHAGP2G / Ag - Livestock Water Intake	\$500.00	
 	CAFGP22 / Avian Nesting Structures	\$600.00			FHAGP3 / Bridge/Culvert Scour Protection	\$500.00	
	CAFGP23 / Electrical Sub Facility	\$600.00			FHAGP4 / Stormwater Maintenance	\$500.00	
	CAFGP24 / Legalize Filling of Tidelands	\$600.00	· ·		FHAGP5 / Building Relocation	\$500.00	
	CAFGP25 / Construct Telecom Tower	\$600.00			FHAGP6 / Rebuild Damaged Home	No Fee	No Fee
	CAFGP26 / Tourism Indust. Construction	\$600.00			FHAGP7 / Residential in Tidal FHA	\$500.00	
	CAFGP27 / Geotechnical Borings	\$600.00			FHAGP8 / Utility Crossing <50acres	\$500.00	-
	CAFGP29/Habitat Create/Restore/Enhance CAFGP30 / 1 to 3 Turbines < 200 Feet	\$600.00			FHAGP9 / Road Crossing <50acres	\$500.00	
	CAFGP31 / Wind Turbines < 250 Feet	\$600.00 \$600.00			FHAGP10 / Stormwater Outfall <50acres	\$500.00	
	Individual Permit Equivalency/CERCLA	No Fee	No Fee		Revision of a GP, IP or Verification Transfer of an Approval	\$200.00	
	members of office Equitation () oct (ob)	110 1 00	110 00		FHA Indv. Permit Equivalency/CERCLA	No Fee	No Foo
	Waterfront Development	Fee Amount	Fee Paid		FRA IIIUV. FeITIIIL EQUIVAIETICY/CERCLA	No Fee	No Fee
	WDGP10 / New Bulkhead/Fili Lagoon ≤ 75'		reerau		Starragatar Basiasy Face	For Amount	F D-id
		\$600.00			Stormwater Review Fees	Fee Amount	Fee Paid
	WDGP14 / Reconstruct Bulkhead	\$600.00			Fee for all Stormwater Reviews		
\vdash	WDGP19/Dock/Piers/Boat Lifts Lagoon	\$600.00					
	WDGP20 / Minor Maint Dredge Lagoon	\$600.00			Consistency Determination	Fee Amount	Fee Paid
	WDGP21 / Shoreline Stabilization	\$600.00			Water Quality Certificate		
	WDGP32 / Dredge Lagoon (post storm event)	\$600.00			Federal Consistency	No Fee	No Fee
	WDGP33 / Dredge post Bulkhead Failure	\$600.00			HMC Water Quality Certificate		
	WDGP34 / Dredge Marina (post storm event)	\$600.00					
	WDGP35 / Aquaculture Activities	\$600.00					
	WDGP36/Placement of Shell (shellfish areas)	\$600.00			Highlands	Fee Amount	Fee Paid
	Individual Permit/Upland				Emergency Permit		
Ø	Individual Permit/Inwater				Pre-application Meeting	\$500.00	
	Zane Letter	\$300.00			Preservation Area Approval	-	
	Modification	7223.00			Resource Area Determination footprint		
	Individual Permit Equivalency/CERCLA	No Fee			Resource Area Determination ≤one acre	\$500.00	
					Resource Area Determination >one acre	,	
	Coastal/Tidal Wetlands	Fee Amount	Fee Paid		HPAAGP 1/ Habitat Creation/Enhance	No Fee	No Foo
	Coastal/Tidal Wetlands Permit	r so ranount	, ceratu		HPAAGP 2 Bank Stabilization	\$500.00	No Fee
	Coastal Wetland Permit Modification					ψουσ.συ	
	Coastal Welland Permit Modification				PAA with Waiver (Specify type below)		

_			
	Freshwater Wetlands	. Fee Amount	Fee Paid
	FWGP1 / Main. & repair Exist Feature	\$600.00	
	FWGP2 / Utility Crossing	\$600.00	
	FWGP3 / Discharge of Return Water	\$600.00	
	FWGP4 / Hazard Site Invest/Cleanup	\$600.00	
	FWGP5 / Landfill Closure	\$600.00	
	FWGP6 / Filling of NSWC	\$600.00	
	FWGP6A /TA- Filling of NSWC	\$600.00	
	FWGP7 / Fill ditch / swale	\$600.00	
	FWGP8 / House Addition	\$600.00	
	FWGP9 / Airport Sightline Clearing	\$600.00	
	FWGP10A / Very Minor Road Crossing	\$600,00	<u>.</u>
	FWGP10B / Minor Road Crossing	\$600.00	
	FWGP11 / Outfalls / Intakes	\$600.00	
	FWGP12 / Survey / Investigation	\$600.00	
	FWGP13 / Lake Dredging	\$600.00	
	FWGP14 / Water Monitoring	\$600.00	
	FWGP15 / Mosquito Control	\$600.00	
	FWGP16 / Habitat Create / Enhance	No Fee	No Fee
	FWGP17 / Trails / Boardwalks	No Fee	No Fee
	FWGP17A / Multiuse paths	\$600.00	
	FWGP18 / Dam Repairs	\$600.00	
	FWGP19 / Dock or Pier	\$600.00	
	FWGP20 / Bank Stabilization	\$600.00	
	FWGP21 / Above Ground Utility	\$600.00	
	FWGP23 / Expand Cranberry	No Fee	No Fee
	FWGP24 / Spring Developments	\$600.00	
	FWGP25 / Malfunction Septic System	No Fee	No Fee
<u> </u>	FWGP26 / Channel / Stream Clean	\$600.00	
. 🗆	FWGP27 / Redevelop Disturbed Site	\$600.00	
_	FWGP Modification	\$240.00	
_ !			

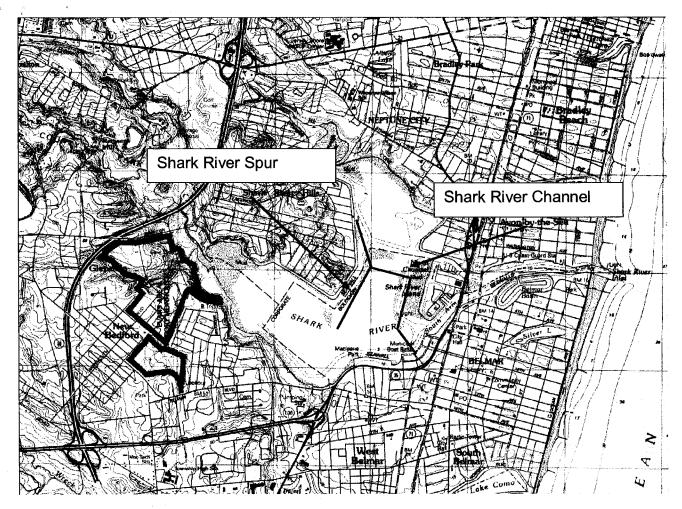
\$240.00

Freshwater Wetlands	Fee Amount	Fee Paid
Individual Wetlands Permit		
Individual Open Water Permit		
Individual Permit Mod. Major/Minor		
Individual Permit Extension	\$1,200.00	
Wetlands Exemption	\$240.00	
Permit Equivalency/CERCLA	No Fee	No Fee

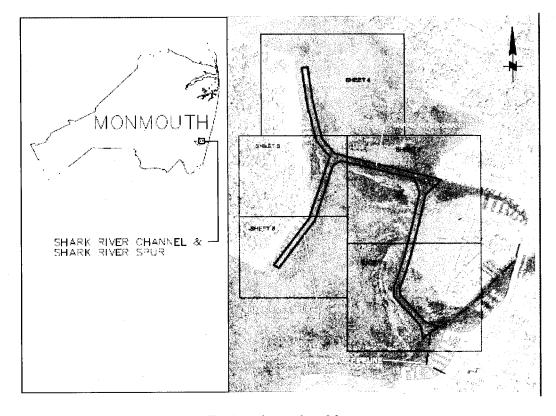
Transition Area Waiver		
Averaging Plan	•	
Reduction		
Hardship Reduction		
Special Activity Stormwater		
Special Activity Linear Development	-	
Special Activity Redevelopment		
Special Activity Individual Permit	_	
Exemption	\$240.00	
Modification Major/Minor		
Extension	\$240.00	

Letter of Interpretation		
Presence Absence	\$240.00	
Presence Absence Footprint	\$480.00	
Delineation ≤ 1.00 Acres	\$600.00	
Verification		
Extension	-	

Please note:


FWGP Extension

If no fee amount is specified in the "Fee Amount" column, please refer to the Regulatory Fee Schedule which can be found at $\underline{www.nj.gov/dep/landuse/forms}$.


Also:

In addition to the standard paper submission, an electronic copy of the entire application, including plans, may be submitted on CD-ROM to assist the Department in the review this application. Plans should be submitted as a CAD file or Shapefile, georeferenced in NJ state plane feet NAD83.Please do NOT send the electronic version via E-Mail.

Electonic permitting and/or application submittal is available for specific applications. Please see the Division website at www.nj.gov/dep/landuse/epermit.html for more information.

Asbury Park, NJ 1995

Project Location Map

DEPARTMENT OF TRANSPORTATION P.O. Box 600 Trenton, New Jersey 08625-0600

CHRIS CHRISTIE

Governor

JAMIE FOX Commissioner

KIM GUADAGNO

Lt. Governor

May 26, 2015

Jodi M. McDonald, Chief U.S. Army Corps of Engineers New York District – Regulatory Branch Jacob K. Javits Federal Building 26 Federal Plaza, Room 1937 New York, NY 10278-0090

RE: Shark River Channel (#038) - Maintenance Dredging Shark River Spur (#039) - Maintenance Dredging Belmar Borough, Monmouth County Borough of Neptune City, Monmouth County Neptune Township, Monmouth County

Dear Ms. McDonald:

The New Jersey Department of Transportation, Office of Maritime Resources is requesting United States Army Corps of Engineers authorization to conduct maintenance dredging within the Shark River Channel and Shark River Spur. A ten year maintenance dredging provision is also requested in order to maintain safe navigation conditions in this channel.

Please find the following enclosed for your review and approval:

- 1. Department of the Army Permit Application, ENG Form 4345;
- 2. A completed Environmental Questionnaire;
- 3. A USGS Quadrangle map with the project area highlighted;
- 4. Project Location Map (aerial photo);
- 5. "Consistency Certification" with the New Jersey State Coastal Zone Management Program;
- 6. March 2015 NJDEP Compliance Statement;
- 7. "Public Notice" information, including project description, and mailing addresses of adjoining property owners, post office(s), city and county governments and the local newspaper(s).
- 8. Site plans (One (1) copy of full scale plans and three (3) copies reduced size (8.5" x 11")
- 9. November 15, 2013 Sediment Sampling Report (ASI Job #33-051 R9) (1 hard copy and 1 electronic copy);

Ms. Jodi McDonald May 26, 2015 Page Two

An application for this project was also submitted to the New Jersey Department of Environmental Protection and is currently pending review.

If you have any questions or need any additional information please contact Jo Wall at (609) 530-4772 or by e-mail at <u>Joselyn.wall@dot.ni.gov</u>.

Sincerely,

Genevieve Clifton, Manager Office of maritime Resources

Enclosures

c: Suzanne U. Dietrick, Chief, Office of Dredging and Sediment Technology

DEPARTMENT OF TRANSPORTATION P.O. Box 600 Trenton, New Jersey 08625-0600

CHRIS CHRISTIE
Governor

JAMIE FOX Commissioner

KIM GUADAGNO

Lt. Governor

May 26, 2015

Mr. Ted Bianchi Construction Official, Borough of Belmar 601 Main Street Belmar, NJ 07719

RE: Waterfront Development Permit/WQC/AUD Application Shark River Channel (#038) - Maintenance Dredging Shark River Spur (#039) - Maintenance Dredging Borough of Belmar, Monmouth County Borough of Neptune City, Monmouth County Neptune Township, Monmouth County

Dear Mr. Bianchi:

This letter is to provide you with legal notification that an application will be submitted to the New Jersey Department of Environmental Protection (NJDEP) Office of Dredging and Sediment Technology for a permit for maintenance dredging of the Shark River Channel and Shark River Spur navigation channels located in Borough of Belmar, Borough of Neptune City and Neptune Township, Monmouth County.

The complete permit application package can be reviewed at either the municipal clerk's office or by appointment at the Department of Environmental Protection's Trenton office. The Department of Environmental Protection welcomes comments and any information that you may provide concerning the proposed development and site. Please submit your written comments within 15 days of receiving this letter to:

New Jersey Department of Environmental Protection Office of Dredging and Sediment Technology P.O. Box 420 Mail Code #401-06C Trenton, New Jersey 08625-0420

If you have any questions or need any additional information please contact Jo Wall at (609) 530-4772 or by e-mail at <u>Joselyn.wall@dot.nj.gov</u>.

Sincerely,

Genevieve Clifton, Manager Office of Maritime Resources

DEPARTMENT OF TRANSPORTATION P.O. Box 600 Trenton, New Jersey 08625-0600

CHRIS CHRISTIE

Governor

JAMIE FOX Commissioner

KIM GUADAGNO Lt. Governor

May 26, 2015

Mr. William J. Doolittle, Construction Official, Borough of Neptune City 106 West Sylvania Avenue Neptune City, NJ 07753

RE: Waterfront Development Permit/WQC/AUD Application Shark River Channel (#038) - Maintenance Dredging Shark River Spur (#039) - Maintenance Dredging Borough of Belmar, Monmouth County Borough of Neptune City, Monmouth County Neptune Township, Monmouth County

Dear Mr. Doolittle:

This letter is to provide you with legal notification that an application will be submitted to the New Jersey Department of Environmental Protection (NJDEP) Office of Dredging and Sediment Technology for a permit for maintenance dredging of the Shark River Channel and Shark River Spur navigation channels located in Borough of Belmar, Borough of Neptune City and Neptune Township, Monmouth County.

The complete permit application package can be reviewed at either the municipal clerk's office or by appointment at the Department of Environmental Protection's Trenton office. The Department of Environmental Protection welcomes comments and any information that you may provide concerning the proposed development and site. Please submit your written comments within 15 days of receiving this letter to:

New Jersey Department of Environmental Protection Office of Dredging and Sediment Technology P.O. Box 420 Mail Code #401-06C Trenton, New Jersey 08625-0420

If you have any questions or need any additional information please contact Jo Wall at (609) 530-4772 or by e-mail at Joselyn wall@dot.nj.gov

Sincerely,

Genevieve Clifton, Manager Office of Maritime Resources

DEPARTMENT OF TRANSPORTATION
P.O. Box 600
Trenton, New Jersey 08625-0600

CHRIS CHRISTIE

Governor

JAMIE FOX
Commissioner

KIM GUADAGNO

Lt. Governor

May 26, 2015

Mr. William J. Doolittle, Construction Official, Neptune Township 25 Neptune Boulevard Neptune, NJ 07753

RE: Waterfront Development Permit/WQC/AUD Application Shark River Channel (#038) - Maintenance Dredging Shark River Spur (#039) - Maintenance Dredging Borough of Belmar, Monmouth County Borough of Neptune City, Monmouth County Neptune Township, Monmouth County

Dear Mr. Doolittle:

This letter is to provide you with legal notification that an application will be submitted to the New Jersey Department of Environmental Protection (NJDEP) Office of Dredging and Sediment Technology for a permit for maintenance dredging of the Shark River Channel and Shark River Spur navigation channels located in Borough of Belmar, Borough of Neptune City and Neptune Township, Monmouth County.

The complete permit application package can be reviewed at either the municipal clerk's office or by appointment at the Department of Environmental Protection's Trenton office. The Department of Environmental Protection welcomes comments and any information that you may provide concerning the proposed development and site. Please submit your written comments within 15 days of receiving this letter to:

New Jersey Department of Environmental Protection Office of Dredging and Sediment Technology P.O. Box 420 Mail Code #401-06C Trenton, New Jersey 08625-0420

If you have any questions or need any additional information please contact Jo Wall at (609) 530-4772 or by e-mail at Joselyn.wall@dot.nj.gov

Sincerely,

Genevieve Cliffon, Manager Office of Maritime Resources

DEPARTMENT OF TRANSPORTATION P.O. Box 600 Trenton, New Jersey 08625-0600

CHRIS CHRISTIE

Governor

JAMIE FOX Commissioner

KIM GUADAGNO

Lt. Governor

May 26, 2015

Mr. Edward Sampson, PP, AICP, Director Monmouth County Division of Planning Monmouth County Hall of Records One East Main Street, P.O. Box 1255 Freehold, NJ 07728

RE: Waterfront Development Permit/WQC/AUD Application Shark River Channel (#038) - Maintenance Dredging Shark River Spur (#039) - Maintenance Dredging Borough of Belmar, Monmouth County Borough of Neptune City, Monmouth County Neptune Township, Monmouth County

Dear Mr. Sampson:

This letter is to provide you with legal notification that an application will be submitted to the New Jersey Department of Environmental Protection (NJDEP) Office of Dredging and Sediment Technology for a permit for maintenance dredging of the Shark River Channel and Shark River Spur navigation channels located in Borough of Belmar, Borough of Neptune City, Neptune Township, Monmouth County.

The complete permit application package can be reviewed at either the municipal clerk's office or by appointment at the Department of Environmental Protection's Trenton office. The Department of Environmental Protection welcomes comments and any information that you may provide concerning the proposed development and site. Please submit your written comments within 15 days of receiving this letter to:

New Jersey Department of Environmental Protection Office of Dredging and Sediment Technology P.O. Box 420 Mail Code #401-06C Trenton, New Jersey 08625-0420

If you have any questions or need any additional information please contact Jo Wall at (609) 530-4772 or by e-mail at <u>Joselyn.wall@dot.nj.gov</u>.

Sincerely.

Genevieve Chifton, Manager Office of Maritime Resources

DEPARTMENT OF TRANSPORTATION P.O. Box 600 Trenton, New Jersey 08625-0600

CHRIS CHRISTIE

Governor

JAMIE FOX Commissioner

KIM GUADAGNO Lt. Governor May 26, 2015

Mr. Michael Meddis, MPH, Public Health Coordinator Monmouth County Health Department 3435 Highway 9 Freehold, NJ 07728

RE: Waterfront Development Permit/WQC/AUD Application Shark River Channel (#038) - Maintenance Dredging Shark River Spur (#039) - Maintenance Dredging Borough of Belmar, Monmouth County Borough of Neptune City, Monmouth County Neptune Township, Monmouth County

Dear Mr. Meddis:

This letter is to provide you with legal notification that an application will be submitted to the New Jersey Department of Environmental Protection (NJDEP) Office of Dredging and Sediment Technology for a permit for maintenance dredging of the Shark River Channel and Shark River Spur navigation channels, located in Borough of Belmar, Borough of Neptune City and Neptune Township, Monmouth County.

The complete permit application package can be reviewed at either the municipal clerk's office or by appointment at the Department of Environmental Protection's Trenton office. The Department of Environmental Protection welcomes comments and any information that you may provide concerning the proposed development and site. Please submit your written comments within 15 days of receiving this letter to:

New Jersey Department of Environmental Protection Office of Dredging and Sediment Technology P.O. Box 420 Mail Code #401-06C Trenton, New Jersey 08625-0420

If you have any questions or need any additional information please contact Jo Wall at (609) 530-4772 or by e-mail at Joselyn.wall@dot.nj.gov.

Genevieve Clifton, Manager Office of Maritime Resources

Sincerely

DEPARTMENT OF TRANSPORTATION P.O. Box 600 Trenton, New Jersey 08625-0600

CHRIS CHRISTIE

Governor

JAMIE FOX Commissioner

KIM GUADAGNO

Lt. Governor

May 26, 2015

Ms. Jodi McDonald, Chief New York District -Regulatory Branch United States Army Corps of Engineers Jacob K. Javits Federal Building 26 Federal Plaza, Room 1937 New York, NY 10278-0090

RE: Waterfront Development Permit/WQC/AUD Application Shark River Channel (#038) - Maintenance Dredging Shark River Spur (#039) - Maintenance Dredging Borough of Belmar, Monmouth County Borough of Neptune City, Monmouth County Neptune Township, Monmouth County

Dear Ms. McDonald:

This letter is to provide you with legal notification that an application will be submitted to the New Jersey Department of Environmental Protection (NJDEP) Office of Dredging and Sediment Technology for a permit for maintenance dredging of the Shark River Channel and Spur navigation channel located in Borough of Belmar, the Borough of Neptune City and Neptune Township, Monmouth County.

The complete permit application package can be reviewed at either the municipal clerk's office or by appointment at the Department of Environmental Protection's Trenton office. The Department of Environmental Protection welcomes comments and any information that you may provide concerning the proposed development and site. Please submit your written comments within 15 days of receiving this letter to:

New Jersey Department of Environmental Protection Office of Dredging and Sediment Technology P.O. Box 420 Mail Code #401-06C Trenton, New Jersey 08625-0420

If you have any questions or need any additional information please contact Joselyn Wall at (609) 530-4772 or by e-mail at <u>Joselyn.wall@dot.nj.gov</u>.

Sincerely,

Genevieve Clifton, Manager Office of Maritime Resources

DEPARTMENT OF TRANSPORTATION P.O. Box 600 Trenton, New Jersey 08625-0600

CHRIS CHRISTIE

Governor

JAMIE FOX Commissioner

KIM GUADAGNO Lt. Governor

May 26, 2015

Ms. April Claudio Clerk, Borough of Belmar 601 Main Street Belmar, NJ 07719

RE: Waterfront Development Permit/WQC/AUD Application Shark River Channel (#038) - Maintenance Dredging Shark River Spur (#039) - Maintenance Dredging Borough of Belmar, Monmouth County Borough of Neptune City, Monmouth County Neptune Township, Monmouth County

Dear Ms. Claudio:

This letter is to provide you with legal notification that an application will be submitted to the New Jersey Department of Environmental Protection (NJDEP) Office of Dredging and Sediment Technology for a permit for the proposed dredging project shown on the enclosed plan.

Three copies of the complete permit application are enclosed for your file and your review. Please distribute one copy to the planning board and one copy to the environmental commission. The third copy shall be maintained in the clerk's office and be made available for public review.

The NJDEP welcomes comments and any information that you and/or the public may provide concerning the proposed maintenance dredging project. Please submit your written comments within 15 days of receiving this letter to:

New Jersey Department of Environmental Protection Office of Dredging and Sediment Technology P.O. Box 420 Mail Code #401-06C Trenton, New Jersey 08625-0420

If you have any questions or need any additional information, please contact Joselyn Wall at (609) 530-4772 or by email at Joselyn Wall@dot.ni.gov.

Sincerely,

Office of Maritime Resources

Enclosures

DEPARTMENT OF TRANSPORTATION P.O. Box 600 Trenton, New Jersey 08625-0600

CHRIS CHRISTIE

Governor

JAMIE FOX Commissioner

KIM GUADAGNO Lt. Governor

May 26, 2015

Mr. Richard Cuttrell Clerk, Neptune Township 25 Neptune Blvd. Neptune, NJ 07753

RE: Waterfront Development Permit/WQC/AUD Application Shark River Channel (#038) - Maintenance Dredging Shark River Spur (#039) - Maintenance Dredging Borough of Belmar, Monmouth County Borough of Neptune City, Monmouth County Neptune Township, Monmouth County

Dear Mr. Cuttrell:

This letter is to provide you with legal notification that an application will be submitted to the New Jersey Department of Environmental Protection (NJDEP) Office of Dredging and Sediment Technology for a permit for the proposed dredging project shown on the enclosed plan.

Three copies of the complete permit application are enclosed for your file and your review. Please distribute one copy to the planning board and one copy to the environmental commission. The third copy shall be maintained in the clerk's office and be made available for public review.

The NJDEP welcomes comments and any information that you and/or the public may provide concerning the proposed maintenance dredging project. Please submit your written comments within 15 days of receiving this letter to:

New Jersey Department of Environmental Protection Office of Dredging and Sediment Technology P.O. Box 420 Mail Code #401-06C Trenton, New Jersey 08625-0420

If you have any questions or need any additional information, please contact Joselyn Wall at (609) 530-4772 or by e-mail at <u>Joselyn.Wall@dot.nj.gov</u>.

Sincerely,

Office of Maritime Resources

Enclosures

DEPARTMENT OF TRANSPORTATION P.O. Box 600 Trenton, New Jersey 08625-0600

CHRIS CHRISTIE

Governor

JAMIE FOX
Commissioner

KIM GUADAGNO

Lt. Governor

May 26, 2015

Ms. Mary Sapp Clerk, Borough of Neptune City 106 W. Sylvania Ave Neptune City, NJ 07753

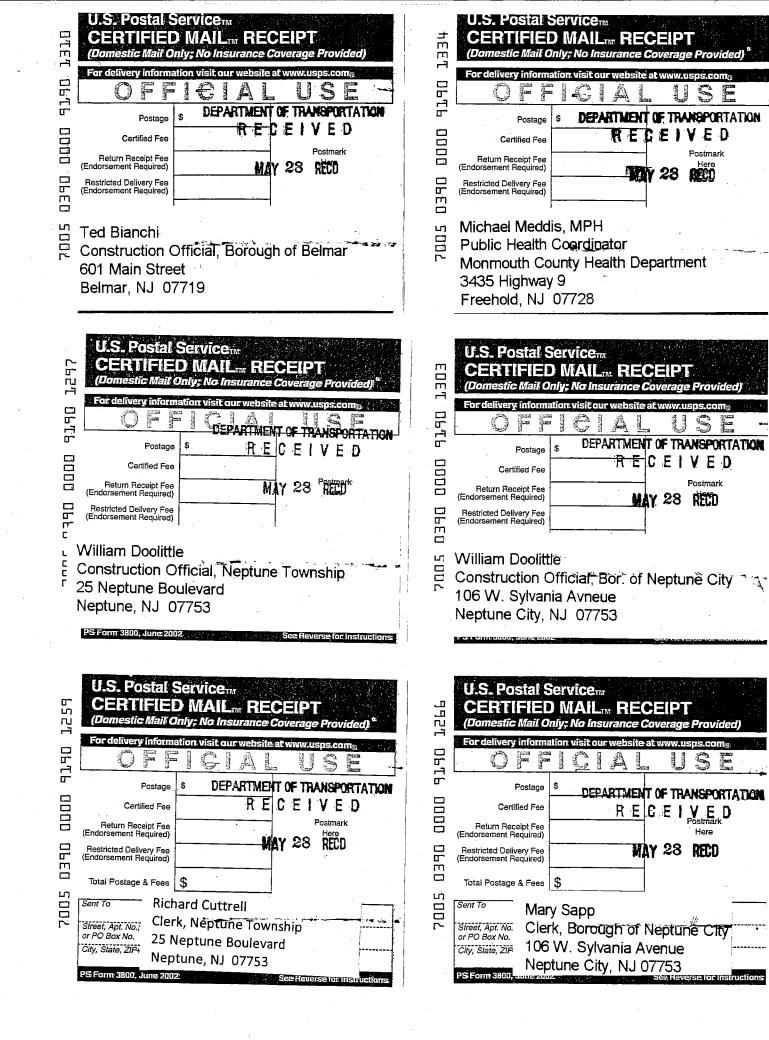
RE: Waterfront Development Permit/WQC/AUD Application Shark River Channel (#038) - Maintenance Dredging Shark River Spur (#039) - Maintenance Dredging Borough of Belmar, Monmouth County Borough of Neptune City, Monmouth County Neptune Township, Monmouth County

Dear Ms. Sapp:

This letter is to provide you with legal notification that an application will be submitted to the New Jersey Department of Environmental Protection (NJDEP) Office of Dredging and Sediment Technology for a permit for the proposed dredging project shown on the enclosed plan.

Three copies of the complete permit application are enclosed for your file and your review. Please distribute one copy to the planning board and one copy to the environmental commission. The third copy shall be maintained in the clerk's office and be made available for public review.

The NJDEP welcomes comments and any information that you and/or the public may provide concerning the proposed maintenance dredging project. Please submit your written comments within 15 days of receiving this letter to:


New Jersey Department of Environmental Protection Office of Dredging and Sediment Technology P.O. Box 420 Mail Code #401-06C Trenton, New Jersey 08625-0420

If you have any questions or need any additional information, please contact Joselyn Wall at (609) 530-4772 or by e-mail at Joselyn.Wall@dot.nj.gov.

Sincerely,

Genevieve Cliffon, Manager Office of Maritime Resources

Enclosures

U.S. Postal Service... 1327 9140 Postage BEUEINED 0000 Certified Fee MAY 28 RECD Postmark Return Receipt Fee (Endorsement Required) Here Restricted Delivery Fee (Endorsement Required) Edward Sampson, PP, AICP, Director 2005 Monmouth County Division of Planning Monmouth County Hall of Records One East Main Street, PO Box 1255 Freehold, NJ 07728

1,273	CERTIFI	Il Servicem ED MAILm RECEIPT il Only; No Insurance Coverage Provided)
	For delivery info	rmation visit our website at www.usps.com _®
91,90	OF	FICIAL USE
	Posta	ge \$ DEPARTMENT OF TRANSPORTATION
0000	Certified F	RECEIVED
	Return Receipt F (Endorsement Require	
390	Restricted Delivery For (Endorsement Require	'68 · · · · · · · · · · · · · · · · · ·
	Total Postage & Fe	es \$
7005	Sent To Ap	ril Claudio
70	Bel	lmar Börðugh Clerk
•	Street, Apt. N or PO Box Nc 601	1 Main Street
	City, State, Zi Bel	mar, NJ 07719
	PS Form 3800, June	2002 See Reverse for Instructions

U.S. Postal Service. CERTIFIED MAIL. RECEIPT 9140 Certified Fee Postmark Return Receipt Fee (Endorsement Required) MAY 27 RECE Here 0340 Restricted Delivery Fee (Endorsement Required) Ms. Jodi McDonald, Chief New York District - Regulatory Branch, USACE Jacob K. Javits Federal Building 26 Federal Plaza, Room 1937 New York, NY 10278-0090

Take Notice that an application has been submitted to the New Jersey Department of Environmental Protection, Office of Dredging and Sediment Technology for a Waterfront Development Permit for the development described below:

APPLICANT: NJDOT Office of Maritime Resources

PROJECT NAME: Shark River Channel and Spur- Maintenance Dredging

PROJECT DESCRIPTION: Maintenance dredging by hydraulic method approximately 102,000 cubic yards of sediment from approximately 8,600 linear feet of the Shark River Channel and Spur (#038 and #039). The project depth is six feet below mean low water (-6' MLW) plus one foot (1') of allowable overdredge. The channel design width is 100'. Channel side-slopes are 3:1. Dredged material is proposed to be pumped to the dewatering site located at Block 108 Lot 1 Borough of Belmar, Monmouth County or Block 563 Lots 1 & 2 Township of Neptune, Monmouth County with final placement of dredged material at an approved landfill.

PROJECT STREET ADDRESS:

Seaview Circle

BLOCK: 563 Dewatering Area) **LOTS:** 1 & 2 (Dewatering Area) **MUNICIPALITY:** Neptune Township

COUNTY: Monmouth

PROJECT STREET ADDRESS:

Belmar Marina

BLOCK: 108 (Dewatering Area)

LOT: 1 (Dewatering Area)

MUNICIPALITY: Belmar Borough

COUNTY: Monmouth

The complete permit application package can be reviewed at either the municipal clerk's office or by appointment at the Department's Trenton office. The Department of Environmental Protection welcomes comments and any information that you may provide concerning the proposed development and site. Please submit your written comments within 15 days of publication of this notice to:

New Jersey Department of Environmental Protection Office of Dredging and Sediment Technology

PO Box 420

Mail Code: #401-06C 401 East State Street

Trenton, New Jersey 08625-0420

Compliance Statement

Coastal Zone Management Rules

(N.J.A.C. 7:7E)

Statutory authority:

N.J.S.A. 13:19-1, N.J.S.A. 12:3-1, N.J.S.A. 12:5-3, and N.J.S.A. 13:9A-1

Date last amended:

July 15, 2013

Shark River Channels (#38 #39)

Maintenance Dredging

Borough of Neptune City
Neptune Township
Borough of Belmar

New Jersey Department of Transportation Office of Maritime Resources P.O. Box 600 1035 Parkway Avenue Trenton, New Jersey 08625

Project Summary

Project: Shark River Channels - Maintenance Dredging

Municipality: Neptune City, Borough of Neptune City, Borough Of Belmar

County: Monmouth

Dredged Material Quantity: ~102,000 yds3

Project Depth:

-6' MLW plus one foot of allowable over dredge.

Dredging Method: hydraulic

Temporary Dewatering Locations:

Belmar Marina

1024-1044 River Road Belmar, NJ 07719 Tax Block: 108 Lot: 1

Borough of Belmar, Monmouth County

Or

Shark River Island 1701 New Jersey 35

Borough of Neptune City, NJ 07753

Tax Block: 563 Lots: 1 & 2

Township of Neptune, Monmouth County

Dredged Material Placement Locations:

Monmouth County Landfill

6000 Asbury Avenue

Tinton Falls 07753

State Plane Coordinates (NAD 1983):

Shark River Channel (038)

Channel Centerline (Station 0+00)

E (x): 623,082.2

N(y): 491,356.8

Channel Centerline (Station 63+72.46):

E (x): 621,042.4

N(y): 496,212.8

Shark River Spur (039)

Channel Centerline (Station 0+00)

E (x): 620,555.4

N(y): 492,568.4 N(y): 494,587.6

Channel Centerline (Station 22+56.15):

E (x): 621,500.6

Dewatering Location Coordinates

Shark River Island Belmar Marina

E(x) 624,334.213

N (y) 493,139.450

E(x) 623,514.331

N (y) 490,716.722

Site Plans:

Seven (7) sheets titled, "Maintenance Dredging and Channel Improvements for Shark River Channel & Shark River Spur" dated May 1, 2015, and prepared by Dewberry

Engineers, Inc.

Project Description: The project consists of maintenance dredging within the Shark River Channel (#038) and Shark River Spur (#039) located in the Borough of Neptune City, and the Township of Neptune and the Borough of Belmar. This maintenance dredging event is limited to dredged material comprised of sand and silt (Station 0+00 to Station 63+72.46 and Station 0+00 to Station 22+56.15) with the material proposed to be dewatered at a nearby site location at the Belmar Marina located between 1024-1044 River Road Belmar, NJ 07719 or on Shark River Island located at 1701 New Jersey 35 Borough of Neptune City, NJ 07753.

Maintenance dredging shall consist of hydraulic dredging of approximately one hundred and one hundred and two thousand cubic yards cubic yards (~102,000 yds3) of sediment comprised of sand and silt, from approximately eight thousand six hundred linear feet (~8,600') of the Shark River Channel and Shark River Spur (# 038 and # 039). The project depth is six feet below mean low water (-6' MLW). plus one foot (1') of allowable overdredge. The channel design width is 100 feet. Channel side slopes are 3:1. Maintenance dredging of the creek was last authorized by the State of New Jersey Department of Environmental Protection (NJDEP) in 1983, (permit #83-0043-1.)

Shoaling, including sediment deposited by Superstorm Sandy, has impeded navigation within this important channel. The maintenance dredging project is intended to restore the channel to the authorized project dimensions to allow safe passage for recreational and commercial marine traffic.

Material will be hydraulically dredged and transported via pipeline for mechanical dewatering to one of the proposed locations before being removed by truck to a permitted location at Monmouth County Landfill as fill. The dredge pipeline to the mechanical dewatering site will be floating except at channel crossings where it will be submerged to avoid a hazard or hindrance to navigation. The pipeline shall be marked as per USCG regulations.

The NJDOT Office of Maritime Resources conducted sediment sampling in May 2015 in preparation of maintenance dredging these channels. The sampling results indicate that the dredged material from this event (as delineated above) will need to be mechanically dewatered prior to beneficial use as landfill. Depending on target use, it may need to be amended with coarse grained material prior to placement. . Analysis of this data is provided in the Compliance Statement below. A copy of this data is provided within the Waterfront Development Permit application.

Permits Required:

State:

Waterfront Development

Water Quality Certificate

Acceptable Use Determination Tidelands Dredging License

Federal: Department of the Army Individual Permit

Environmental Assessment and Compliance - Rules on Coastal Zone Management (NJAC 7:7E).

The following constitutes an environmental assessment of the proposed project and its compliance with the Rules on Coastal Zone Management (N.J.A.C. 7:7E). Only the rules applicable to the project are addressed below. Text of the rules is not included. A complete listing of all rules and text are available on-line at http://www.nj.gov/dep/rules/rules/njac7-7e.pdf.

SUBCHAPTER 3. SPECIAL AREAS

7:7E-3.2 Shellfish habitat

According to the 1985 Shellfish Distribution Map (Appendix C), the Shark River Channel And Shark River Spur is located in shellfish habitat designated as high commercial value for hard clams. Maintenance dredging within shellfish habitat is conditionally acceptable, provided the disturbance to shellfish habitat is minimized to the greatest extent possible. The project is limited to the dimensions of the authorized channel and the minimum depth required for vessels currently using the channel. No expansion of the channel is proposed.

The shellfish growing water classification of the channel area to be dredged is classified as "special restricted" (see Appendix B). The proposed maintenance dredging project is not anticipated to result in the downgrading of the shellfish growing water classification.

The proposed maintenance dredging project is in compliance with this rule.

7:7E-3.5 Finfish migratory pathways

The proposed maintenance dredging project will not create any physical barriers to the movement of fish along finfish migratory pathways, and will not lower water quality to an extent that interferes with movement of fish along migratory pathways.

A temporary increase in turbidity is expected at the dredging site during active dredging, but generally hydraulic dredging reduces the generation of suspended sediment as compared to other dredging methods.

The proposed maintenance dredging project will comply with all recommended timing restrictions to minimize potential impacts to anadromous fish runs.

The proposed maintenance dredging project is in compliance with this rule.

7:7E-3.6 Submerged vegetation habitat

There is no known submerged aquatic vegetation habitat within the limits of the channel design or pipeline route. Therefore, no impact to submerged aquatic vegetation is anticipated.

The proposed maintenance dredging project is in compliance with this rule.

7:7E-3.7 Navigation channels

The Shark River Channel and Shark River Spur are an existing navigation channels serving several marinas and recreational and commercial marine traffic. The maintenance dredging project proposes to restore the existing channel to the required project depth for vessels currently using the channel. The project is intended to restore adequate depth for safe navigation.

The dredging equipment may cause a temporary impediment to navigation. However, all vessels and pipelines shall be marked and/or lighted as required by U. S. Coast Guard requirements.

The project does not propose construction of any structures.

The proposed maintenance dredging project is in compliance with this rule.

7:7E-3.15 Intertidal and subtidal shallows

Maintenance dredging of intertidal and subtidal shallows within the channel footprint is acceptable to maintain adequate water depths in accordance with N.J.A.C. 7:7E-4.6. The proposed maintenance dredging project is in compliance with the Maintenance Dredging Rule (N.J.A.C. 7:7E-4.6) (see below).

Maintenance dredging shall be limited to the authorized project depth and channel dimensions only. Therefore impacts to intertidal and subtidal shallows have been minimized to the maximum extent practicable.

The proposed maintenance dredging project is in compliance with this rule.

7:7E-3.36 Historic and archaeological resources

The project is maintenance dredging of an existing previously dredged navigation channel. The project is limited to the previously dredged channel dimensions. During the post-Superstorm Sandy debris scanning, a potential shipwreck was observed outside of the channel limits in the area shown in the plans on sheet 4 of 7. The 50-foot buffer extends into the channel area. This debris was not removed during the debris removal program and is likely still in place. However, due to the precision of hydraulic dredging, the proposed work is not anticipated to impact the potential resource. The contractor will be informed of the presence of the debris field and inspectors will be carefully monitoring the work activity. Should historic material be observed during dredging, SHPO will be contacted for direction. Additional information, in the form of side scan sonar of the debris field, has been previously provided to the Department, but can also be provided on request.

The proposed maintenance dredging project is in compliance with this rule.

7:7E-3.50 Lands and waters subject to public trust rights

All lands and waters associated with this maintenance dredging project are subject to public trust rights. Public access is currently available and will continue to be provided in accordance with the public access rule (see discussion of public access rule below (N.J.A.C. 7:7E-8.11)).

The proposed maintenance dredging project is in compliance with this rule.

SUBCHAPTER 4. GENERAL WATER AREAS

7:7E-4.6 Maintenance dredging

The proposed project is maintenance dredging of an existing, previously dredged State Channel. The project is limited to maintenance dredging to the authorized project depth and channel dimensions. The channel is currently used by several marinas and recreational and commercial marine vessels requiring the project depth. Dredged material comprised of sand and silt is proposed to be pumped to a site to be mechanically dewatered at the Belmar Marina between 1024-1044 River Road Belmar, NJ 07719 or 1701 New Jersey 35 Neptune City, NJ 07753 in Monmouth County. Maintenance dredging was last authorized by the State of New Jersey Department of Environmental Protection (NJDEP) in1983, (Permit #83-0043-1).

The NJDEP Bureau of Coastal Engineering conducted sediment sampling in March 2015 in preparation of maintenance dredging the Shark River Channel and Shark River Spur. The sediment sampling results from this event met the Residential Direct Contact Soil Remediation Standards, with minor exceptions as noted. Sediment results indicate that the material is suitable for placement at a licensed Solid Waste landfill.

Post-storm sediment sampling was conducted in March 2015 to support this permit application for the proposed maintenance dredging event. The bulk sediment chemistry results from this event met the Residential Direct Contact Soil Remediation Standards with the exception of benzo(a)pyrene in one composite at 370 ppb.

		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			,		
ASI Job # 35-025		NJDEP Residential		Unamended Sediment (Units:ug/kg)			Unamen Sedimo (Units:uş		
		Direct Contact Soil		Com	Comp A		Comp A		Core 03
		Remediation Standards		20150288			201502		
			PQL*	7825	460		78254:		
Analyte Name	CAS No.	ug/kg (ppb)	ug/kg	Result	RL	Q	Result		
Benzidine	92-87-5	700	700	ND	5300	ND	ND		
Benzo(a)anthracene (1,2-Benzanthracene)	56-55-3	600	200	340	27		170		
Benzo(a)pyrene	50-32-8	200	200	1370世	27		180		
Benzo(b)fluoranthene (3,4- Benzofluoranthene)	205-99-2	600	200	450	27		230		
Benzo(g,h,i)perylene	191-24-2	380000000	200	220	27		120		
Benzo(k)fluoranthene	207-08-9	6000	200	140	27		100		
bis(2-Chloroethyl)ether	111-44-4	400	200	ND	53	ND	ND		
Bis(2-chloroisopropyl) ether	39638-32-9	23000	200	ND	53	ND	ND		
bis(2-Ethylhexyl)phthalate	117-81-7	35000	200	ND	270	ND	ND		
Butyl benzyl phthalate	85-68-7	1200000	200	ND	270	ND	ND		
Caprolactam	105-60-2	31000000	200	ND	270	ND	ND		
Carbazole	86-74-8	24000	200	33	53	J	ND		
Chrysene	218-01-9	62000	200	330	27		170		

Dibenz(a,h)anthracene	53-70-3	200	200	63	27		20
	#N/A			#N/A	#N/A	#N/A	#N/A
Diethylphthalate	84-66-2	49000000	200	ND	270	ND	ND
Di-n-butylphthalate	84-74-2	6100000	200	ND	270	ND	ND
Di-n-octylphthalate	117-84-0	2400000	200	ND	270	ND	ND
Fluoranthene	206-44-0	2300000	200	500	27		290
Fluorene	86-73-7	2300000	200	43	27		27
Hexachloro-1,3-butadiene	87-68-3	6000	200	ND	53	ND	ND
Hexachlorobenzene	118-74-1	300	200	ND	27	ND.	ND
Hexachlorocyclopentadiene	77-47-4	45000	200	ND	800	ND	ND
Hexachloroethane	67-72-1	35000	200	ND	270	ND	ND
Indeno(1,2,3-cd)pyrene	193-39-5	600	200	190	27		96
Isophorone	78-59-1	510000	200	ND	53	ND	ND
Naphthalene	91-20-3	6000	200	53 .	27		35
Nitrobenzene	98-95-3	31000	200	ND	53	ND	ND
N-Nitrosodimethylamine	62-75-9	700	700	ND	270	ND	ND
N-Nitroso-di-n-propylamine	621-64-7	200	200	ND	53	ND	ND
N-Nitrosodiphenylamine	86-30-6	99000	200	ND	53	ND	ND.
Pentachlorophenol	87-86-5	3000	300	ND	270	ND	ND
Phenanthrene	85-01-8	N/A	200	270	27		150
Phenol	108-95-2	18000000	200	ND	53	ND	ND
Pyrene	129-00-0	1700000	200	540	27		290

Table 4a continued

Pesticide/Arochlor Analysis of Bulk Sedime

ASI Job # 35-025	,	NJDEP Residential Direct Contact Soil		Unamended Sediment (Units:ug/kg) Comp A 20150288			Unamen Sedim (Units:uş Core 03				
		Remediation Standards						20150288		201502	
			PQL*				78254:				
Analyte Name	CAS No.	ug/kg (ppb)	ug/kg	Result ¹	RL	Q	Result				
4,4'-DDD	72-54-8	3000	3	3.7	14	JР	32				
4,4'-DDE	72-55-9	2000	3	ND	14	ND	ND				
4,4'-DDT	50-29-3	2000	3	ND	14	ND	ND				
Aldrin	309-00-2	40	2	7.4	6.6		ND				
alpha-HCH (alpha-BHC)	319-84-6	100	2	ND	6.6	ND	ND				
beta-HCH (beta-BHC)	319-85-7	400	2	ND	8	ND	39				
Lindane (gamma-HCH) (gamma-BHC)	58-89-9	400	2	ND	6.6	V	ND				
alpha-Chlordane	5103-71-9	200	2	ND	6.6	ND	ND				
gamma-Chlordane	5103-74-2	200	2	ND	6.6	ND	ND				
Chlordane	57-74-9	200	2	0.0		ND	0.0				
Dieldrin	60-57-1	40	3	ND	14	ND	ND				

Endosulfan I	959-98-8	470000	3.	3.3	6.6	Ј	ND	
Endosulfan II	33213-65-9	470000	3	ND	14	ND	ND	Γ
Endosulfan I and II (alpha and beta)	115-29-7	470000	3	3.3		J	0.0	Γ
Endosulfan sulfate	1031-07-8	470000	3	ND	14	ND	21	Γ
Endrin	72-20-8	23000	3	ND	14	ND	ND	Γ
Heptachlor	76-44-8	100	2	ND	6.6	V	ND	Γ
Heptachlor epoxide	1024-57-3	70	2	ND	6.6	V	26	Γ
Methoxychlor	72-43-5	390000	20	ND	53	ND	ND	
Toxaphene	8001-35-2	600	200	ND	260	ND	ND	
Arochlor-1016	12674-11-2	200	30	ND	27	ND	ND	Г
Arochlor-1221	11104-28-2	200	30	ND	27	ND	ND	Г
Arochlor-1232	11141-16-5	200	30	ND	27	ND	ND	
Arochlor-1242	53469-21-9	200	30	ND	27	ND	ND	Γ
Arochlor-1248	12672-29-6	200	30	ND	27	ND	ND	Γ
Arochlor-1254	11097-69-1	200	30	15	27	J	ND	Γ
Arochlor-1260	11096-82-5	200	30	ND	27	ND	ND	Γ
Total Arochlor(SUM)	1336-36-3	200	30	15		J	0.0	

A complete electronic copy of the sediment sampling results are provided within the permit application.

The project will comply with all recommended seasonal timing restrictions to minimize potential impact to aquatic resources.

The project is in compliance with this Rule.

SUBCHAPTER 6. GENERAL LOCATION RULES

7:7E-6.2 Basic location rule

The project is a maintenance dredging project of an existing channel. No expansion or changes to the channel dimensions are proposed. Dredged material is proposed to be mechanically dewatered and sent to the Monmouth Country land fill as fill.

The project is in compliance with this Rule.

7:7E-6.3 Secondary impacts

The project proposes maintenance dredging of an existing State Channel to authorized project depth. The channel serves several marinas and recreational marine traffic. No expansions of the channel design or service area are proposed. The project is not anticipated to have secondary impacts.

The project is in compliance with this Rule.

SUBCHAPTER 7. USE RULES

7:7E-7.12 Dredged material placement on land

The beneficial use of dredged material of appropriate quality and particle size for landfill cover is encouraged provided that the use is protective of human health, groundwater quality, and surface water quality, and manages ecological risks.

The material quality has been reviewed by the LSRP and determined to be compatible for the use as land fill at the Monmouth County Landfill.

The project is in compliance with this Rule.

SUBCHAPTER 8. RESOURCE RULES

7:7E-8.2 Marine fish and fisheries

The project is limited to maintenance dredging of an existing channel. The proposed maintenance dredging project will comply with all recommended timing restrictions to minimize potential impacts to anadromous fish runs. No significant adverse impacts to marine fish or fisheries are anticipated.

The project is in compliance with this Rule.

7:7E-8.4 Water Quality

A temporary increase in turbidity in the water column is expected at the dredging site during active hydraulic dredging, but generally hydraulic dredging reduces the generation of suspended sediment as compared to other dredging methods. The discharge from the mechanical dewatering process shall meet the Surface Water Quality Standards before it is returned to the receiving water body. The project is in compliance with this Rule.

Shark River Channel and Shark River Spur (#038 and #039) – State Channel Maintenance Dredging Page 10 of 12 Borough of Belmar, Neptune Township and Borough of Neptune City, Monmouth County

7:7E-8.8 Vegetation

The project is in compliance with the submerged vegetation habitat rule (7:7E-3.6) above. There is no anticipated impact to terrestrial vegetation.

The project is in compliance with this Rule.

7:7E-8.11 Public access

The project consists of improving an existing State channel for public navigation. Public access to the immediate work area may be temporarily restricted during construction. However, all existing public access shall be maintained for the project area.

The project is in compliance with this Rule.

7:7E-8.13 Buffers and compatibility of uses

The project proposes maintenance dredging of an existing navigation channel. There are no proposed changes in use for the channel or surrounding area.

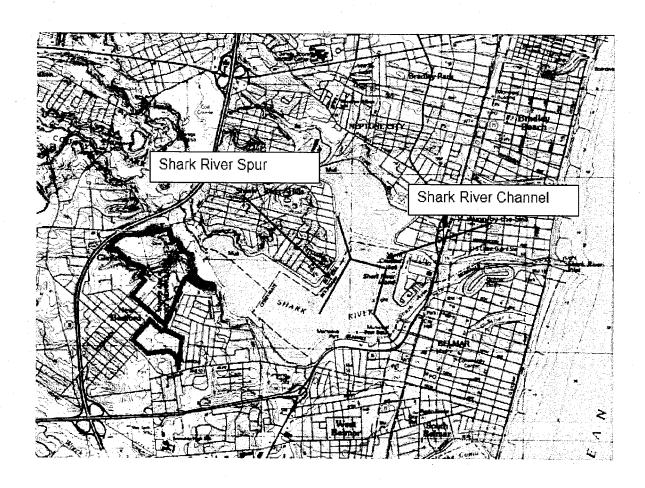
The proposed project is in compliance with this Rule.

Compliance Statement

The proposed maintenance dredging project is in compliance with the applicable Rules on Coastal Zone Management (N.J.A.C. 7:7E) and is consistent with the eight basic coastal policies specified at N.J.A.C. 7:7E-1.1(c).

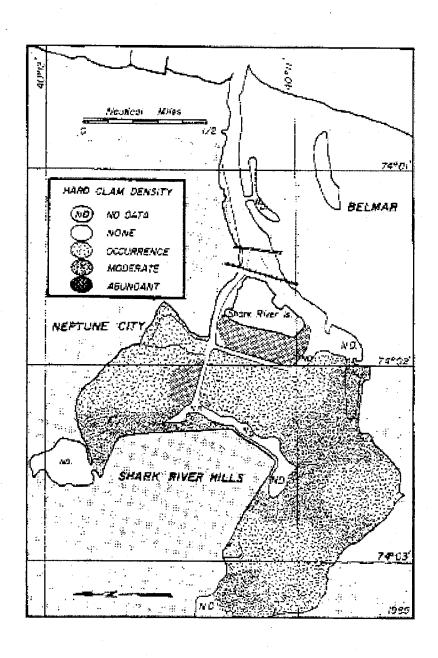
Based on the determination of compliance with the Coastal Zone Management Rules above, no significant environmental impacts are anticipated. All potential impacts have been minimized to the maximum extent practicable.

ATTACHMENTS

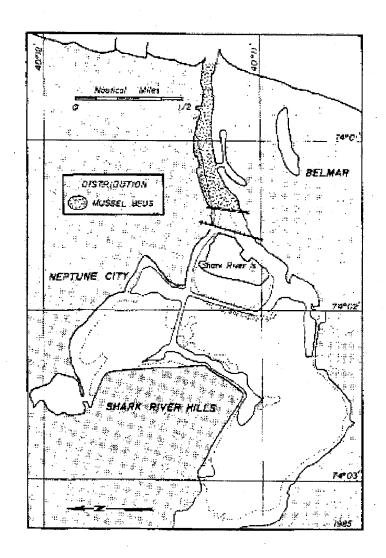

Appendix A

Shark River Channel and Shark River Spur(#38 and #039)

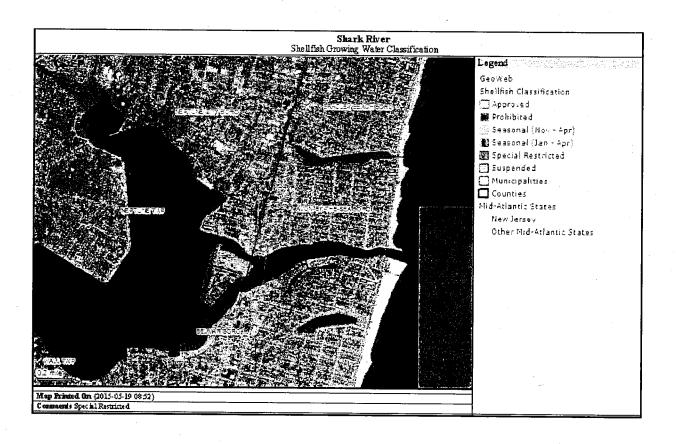
Township of Neptune, Borough of Neptune City, and the Borough of Belmar


Monmouth County

Project Location Map


Appendix B

Shark River Channel (#038) Shark River Spur (#039) Hard Clam Classification Map


Appendix C

Shark River Channel (#038) Shark River Spur (#039) Mussel Bed Map (1963)

Appendix D

Shark River Channel (#038) Shark River Spur (#039) Shellfish Growing Water Classification

SHARK RIVER CHANNEL AND SHARK RIVER SPUR HISTORIC RESOURCES MAP

Township of Neptune Township, Borough of Neptune City, and
Borough of Belmar
Monmouth County, New Jersey

CALE: 1" = 1000'

DATE: May 2015

Dewberry

Source: New Jersey 2013 High Resolution Orthophotography, NJDEP Shellfish Classification for New Jersey (Edition 2014)

Historic Resources

Channel and Spur Limits

Historic Resources Buffer

Boundary

State of New Jersey

CHRIS CHRISTIE Governor

KIM GUADAGNO Lt. Governor DEPARTMENT OF ENVIRONMENTAL PROTECTION

Division of Land Use Regulation Bureau of Tidelands Management P.O. Box 420 Code 501-02B Trenton, NJ 08625-0420 Tel. # 609-777-0454 Fax # 609-777-3656

FEB 5 _ 2013

NJDOT Office of Maritime Resources PO BOX 837 1035 Parkway Ave Trenton, NJ 08625

RE: NJDOT OFFICE OF MARITIME RESOURCES, New Dredging License application. Statewide, Atlantic

City. Atlantic County

FILE: #0000-14-0005.1 TD1140001

Dear Applicant:

Please find the license document for the above-referenced dredging project enclosed with this correspondence.

The State of New Jersey may claim title to a portion of the property in-shore of the licensed area, and the state does not waive this claim by approving and issuing this license document.

Sincerely.

Ms. Madhu Guru, PE

Assistant Director

Bureau of Tidelands Management

MG/kd

BOB MARTIN

Commissioner

A Mineral Rights Agreement from the State of New Jersey

The Tidelands Resource Council in the Department of Environmental Protection, empowered under N.J.S.A. 13:1B-13 to approve licenses of lands owned by the State of New Jersey that are now or were formerly under tidewater, having due regard for the public interest, has approved a license to NJDOT OFFICE OF MARITIME RESOURCES, hereafter referred to as the licensee(s).

The licensee(s) has applied for the right to dredge an area of land under tidewater Statewide.

The license shall be in effect for twenty four (24) year from MAY 7, 2014 TO MAY 7, 2038. There will be no fee for this license.

This license may be revoked at any time and for any purpose deemed necessary and reasonable by the Tidelands Resource Council.

The licensee(s) may not further improve or develop the licensed area unless a permit, as per N.J.S.A. 12:5-3, and an additional license are obtained for that purpose. The licensee(s) may not appropriate the licensed area for exclusive use.

Madhu Guru, Assistant Director

Bureau of Tidelands Management

Division of Land Use Regulation

Department of Environmental Protection

2 5 2015

Date

Aqua Surrey, Inc.

Volume I

Technical Report on the Sampling and Testing of Sediment From Shark River Channel and Shark River Spur

Prepared for:

Parsons Brinckerhoff 2000 Lenox Drive, Third Floor Lawrenceville, NJ 08648

Issued:

May 6, 2015

ASI Job No. 35-025 4----

469 Point Breeze Road Flemington, NJ 08822

Phone: 908-788-8700 Fax: 908-788-9165 mail@aquasurvey.com www.aquasurvey.com

Table of Contents

\mathbf{v}	ol	11	m	e	1
	V.		ш	•	_

Tabl	e of Cor	itents	rage
		Page	
		ige	
I.	Intro	duction	5
П.		espondence	
n.	Test A	Administration	9
	A.	Sponsor	
	В.	Testing Facilities	
	C.	Dates of Experimentation	
	D.	Study Participants	
IV.	Mate	rials and Methods	9
	. A.	Sampling	
	B.	Homogenizing and Compositing	
	C.	Physical and Total Organic Carbon Analyses	10
	D.	Chemical Analyses	11
V.	Physi	cal and Chemical Analysis Results	11
		Figures and Tables	
Figur	e 1	Site Map	12
Table	: 1	DGPS Coordinates	
Table	2	Sample Identification and Compositing Scheme	13
Table	: 3	Grain Size Distribution, Percent Moisture and TOC	14
		Chemical Analysis Tables Information Page	
	4a-4b	Chemical Analysis of Bulk Sediment (NJDEP Residential)	
Table	5	Chemical Analysis of Field Blank	25
		Appendices	,
Appe	ndix A:	Sediment Core Logs	30
		Photographs	
Appe	ndix C:	Chains of Custody	61
Appe	ndix D:	Sample Use Forms	65
		Percent Moisture and Grain Size Distribution Raw Data	
Appe	ndix F:	TOC Raw Data and SRM Control Chart	197

Volume II

Eurofins Lancaster Laboratories Chemical Analysis of the Composites and Field Blank

Information Page

Technical Report on the Sampling and Testing of Sediment From Shark River Channel and Shark River Spur

STUDY INITIATION DATE

March 23, 2015

STUDY COMPLETION DATE

May 6, 2015

PERFORMING LABORATORY

Aqua Survey, Inc. 469 Point Breeze Road Flemington, New Jersey 08822

SPONSOR

Parsons Brinckerhoff 2000 Lenox Drive, Third Floor Lawrenceville, NJ 08648

LABORATORY PROJECT ID

ASI Study No. 35-025

Signature Page

Technical Report on the Sampling and Testing of Sediment From Shark River Channel and Shark River Spur

Prepared for:

Parsons Brinckerhoff 2000 Lenox Drive, Third Floor Lawrenceville, NJ 08648

This report, as well as all records and raw data were audited and found to be an accurate reflection of the study. Copies of raw data will be maintained by Aqua Survey, Inc, 469 Point Breeze Road, Flemington, New Jersey, 08822.

Rolet m Full	5/6/15
Robert M. Fristrom	Date
Quality Assurance Officer	
Melille (Monas)	5/6/15
Michelle Thomas Laboratory Manager	Date
Laboratory Manager	
·	

Jon Doi, Ph.D.

Executive Vice President

5-4-15

Date

I. INTRODUCTION

The objective of this project was to collect and analyze sediment from Shark River and Shark River Spur (Channels 038 and 039), Monmouth County, New Jersey. This work was conducted in accordance with Appendix B, Attachment 1, of the technical manual entitled "The Management and Regulation of Dredging Activities and Dredged Material in New Jersey's Tidal Waters" (Dredging Manual), October 1997 and the SAP from NJOT dated February 27, 2015.

ASI performed all sampling and physical analyses of the sediments. Eurofins Lancaster Laboratories (ELL) of Lancaster, PA performed the chemical analyses of the sediment composites and the field blank.

II. CORRESPONDENCE

The following pages provide relevant correspondence for this project.

State of New Jersey

DEPARTMENT OF TRANSPORTATION P.O. Box 600 Trenton, New Jersey 08625-0600

CHRIS CHRISTIE

Governor

JAMIE FOX Commissioner

KIM GUADAGNO Lt. Governor

February 27, 2015

Mr. Mark Davis
Office of Dredging and Sediment Technology
NJ Department of Environmental Protection
401 East State Street
Trenton, NJ 08625

Dear Mark:

The following sampling plan is based on the notes and diagram that was provided by Joel Pecchioli of the Office of Dredging and Sediment Technology via email on February 24 and 26, 2015. Please review the following for compliance with the current regulations and provide us with your response as to the adequacy of the testing approach for eventual inclusion in a dredging permit application.

The Shark River and Shark River Spur channels will be sampled to a project depth of 6 feet plus one foot below mean low water. Each core will be taken with a Vibracore device, following USACE sampling protocol for dredging projects. While the attached bathymetric plan shows approximate core locations, actual core locations will be recorded with GPS at the time of sampling. In general, cores should always be taken in the shallowest portion of the shoal; for this project, cores 1-5 should be 25 ft in from the south/east boundary of the channel, cores 6-8 should be 25 ft in from the north/west boundary, cores 9-10 should be taken mid-channel and 11-14 should be 25 feet from the south/west boundary.

Field observations of the type of sediment, stratification and depth of penetration will be performed and recorded at the time of sampling. If stratification layers greater than two feet are observed, strata will be stored separately and NJDEP will be contacted for further instruction.

Channel	Channel	Volume	Targeted	Composite Scheme
Number	Name	Range	Sample Depth	
038	Shark River	48,894 - 73,674 cyd	-7 MLW	Comp A: cores 1,2,3
	Channel			Comp B: cores 4, 5
· ·				Comp C: cores 6,7,8
				Comp D: cores 9,10
039	Shark River	17,952 – 28,346 cyd	-7 MLW	Comp E; cores 11,12
	Spur			13,14

Mark Davis Page Two February 27, 2015

In the Table is a summary of the channel samples, estimated volume range based on the 2013 surveys, targeted depth (max dredge depth), and compositing scheme that was previously provided by Mr. Pecchioli. Only cores of similar grain size should be composited. If grain size between cores targeted for composition varies by more than 20% upon visual inspection, please contact NJDEP for guidance.

The analytical approach for the sediment will be to analyze each core for grain size, percent moisture, and total organic carbon (TOC). Cores and strata (if present) should be homogenized prior to subsampling. An overnight grain size analysis will determine if a given core is at least 90% sand. If each core is less than 90% sand, then the compositing scheme listed will be followed. If each core is greater than 90% sand, no further analysis will be performed, other than the TOC and percent moisture. If a group of cores contains samples that are both over and under the 90% sand mark, then NJDEP will be consulted for guidance. Each composite prepared will be subjected to grain size by hydrometer method, TOC, and bulk sediment chemistry. No elutriates or site water analysis is required for this round of sampling. Target Analyte List will be as outlined in the NJDEP Dredging Manual (NJDEP, 1997), with detection limits appropriate for comparison to the Residential Soil Remediation Standards.

Please let me know if you have any questions, or if this reflects your understanding of our agreed sampling plan.

Sincerely,

W. Scott DouglasProject ManagerNJDOT, Office of Maritime Resources

Jon Doi

From:

Joel Pecchioli <Joel.Pecchioli@dep.ni.gov>

Sent:

Thursday, March 26, 2015 3:36 PM

To:

Douglas, Scott; Jon Doi; Grenier, Jennifer J.; Lunemann, Matthew; Marano, Mike J.

Cc:

Mark Davis

Subject:

RE: Shark River grain size guestion ...

Yes – I agree ...

From: Douglas, Scott [mailto:SCOTT.DOUGLAS@dot.nj.gov]

Sent: Thursday, March 26, 2015 3:21 PM

To: Jon Doi; Grenier, Jennifer J.; Lunemann, Matthew; Marano, Mike J.

Cc: Joel Pecchioli; Mark Davis

Subject: RE: Shark River grain size question ...

Sounds like a good plan Jon. I am copying Joel on this email. Joel, do you agree?

sd

From: Jon Doi [mailto:doi@aquasurvey.com] Sent: Thursday, March 26, 2015 3:19 PM

To: Grenier, Jennifer J.; Lunemann, Matthew; Marano, Mike J.; Douglas, Scott

Subject: Shark River grain size question ...

We did a Quick Sieve grain size analysis on 3 samples that made up Composite A, i.e., 038-1, 038-2 and 038-3. We did this, because we thought 038-3 might be over 20% different than 038-1 or 038-2. That was, in fact, the case. The grain size values for the 3 samples are:

038-1: 67.3% sand; 038-2: 71.2% sand:

038-3: 41.0% sand.

Do you want 038-1 and 038-2 composited together and 038-3 run as a discrete sample? Please advise. Thank you.

Take care,

Jon

Jon Doi, Ph.D.

Principal/Executive Vice President

Aqua Survey, Inc. 469 Point Breeze Road Flemington, NJ 08822 Phone: 908-788-8700

Fax: 908-788-9165 Cell: 908-347-3935 doi@aquasurvey.com www.aquasurvey.com

III. TEST ADMINISTRATION

A. Sponsor

Parsons Brinckerhoff 2000 Lenox Drive, Third Floor Lawrenceville, NJ 08648

B. Testing Facilities

Aqua Survey, Inc. 469 Point Breeze Road Flemington, NJ 08822

Eurofins Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17601

C. Dates of Experimentation

Date of Study Initiation:

March 23, 2015

Date of Study Completion:

May 6, 2015

Scientist

D. Study Participants

Jon Doi, Ph.D.
Thomas Dolce
Robert Fristrom

Executive Vice President Field Operations Manager Quality Assurance Officer

Elizabeth Horn

Jim Karwacki Kevin Sondag

Field Operations Support Field Operations Specialist

Michelle Thomas

Laboratory Manager

IV. MATERIALS AND METHODS

All sampling and testing were performed in accordance with Appendix B, Attachment 1 of the technical manual "The Management and Regulation of Dredging Activities and Dredged Material in New Jersey's Tidal Waters" (NJDEP Dredging Manual), October 1997, and the SAP from NJDOT dated February 27, 2015.

A. Sampling

Test sediment from fourteen locations and a field blank were collected from the Shark River by Aqua Survey personnel March 23 and 25, 2015.

The vessel used for sampling, the R/V Raritan, was positioned using a Trimble SPS 855 Differential Global Positioning System (DGPS). Sediment collection was performed using a Rossfelder P-3 vibracore with flexible plastic core liners. The project depth was 7 feet Mean Low Water (MLW) including 1 foot overdredge allowance.

The core samples were inspected and photographed, and the characteristics were recorded on Sediment Core Logs. All samples were assigned unique ASI sample numbers. All samples were received at ASI in Flemington, NJ under chain of custody on ice and stored at 2-4 °C.

The appendices contain all supporting documentation including ASI sediment core logs (Appendix A), photographs (Appendix B) chains of custody (Appendix C), sample use forms (Appendix D), percent moisture and grain size distribution raw data (Appendix E) and TOC raw data (Appendix F).

B. Homogenizing and Compositing

Each of the fourteen core samples was carefully homogenized using a stainless steel mixer. This procedure followed the specific guidelines found on pages 9-11 and in Appendix A of the Dredging Manual and in ASI's standard operating procedure SOP/PRP/008. Samples were mixed until uniform in color and texture.

Using a #230 (62.5 micron) separation sieve, three (3) samples (038-1, 038-2 and 038-3) were analyzed for sand content based upon visual inspection. If samples that comprise a planned composite showed greater than 20% difference in sand content, the compositing scheme is altered to prevent dissimilar cores from being composited together. Results of the overnight sieve analysis for the three (3) samples were: 038-1: 67.3% sand; 038-2: 71.2% sand, and 038-3: 41.0%. As discussed with NJDOT and NJDEP, it was determined that one core, 038-3, was to be removed from compositing, and it was sent to the laboratory for full chemical analysis as a discrete sample. Five (5) composites were created from the cores. Complete sample identification numbers and the compositing scheme can be found in Table 2.

Sub-samples of each of the samples, both individual cores and composites, were reserved for the appropriate physical and chemical analyses. Subsamples of the composites were archived in the freezer.

C. Physical and Total Organic Carbon Analysis

All samples, both individual cores and composites, were analyzed by ASI for percent moisture and grain size distribution in accordance with the

Standard Test Method for Particle-Size Analysis of Soils, Designation ASTM D422-63, reapproved 2002.

Total Organic Carbon (TOC) was also determined at ASI based on the guidance from EPA Office of Solids Waste and Emergency Response SW-846 Method No. 9060 (Volume IC, Chapter 5, Revision 0, 9/86). The instrument for this analysis was the Dohrmann TOC Boat Sampler, Model 183 (Serial number 98202003), which was connected to the Dohrmann Apollo 9000 TOC Analyzer.

See Appendix E for the grain size distribution and percent moisture raw data. TOC raw data and a standard reference material control chart can be found in Appendix F.

D. Chemical Analyses

Sub-samples of the composites and the field blank were transferred to ELL following chain-of-custody procedures. The samples were placed in jars and shipped in coolers with ice packs.

The laboratory was responsible for chemical analysis of the samples. The sediment composites and the field blank were analyzed for all the analytes listed at this location: http://www.nj.gov/dep/srp/regs/rs/rs_appendix1.pdf, plus chromium speciation.

V. PHYSICAL AND CHEMICAL ANALYSIS RESULTS

The grain size distribution, percent moisture, and total organic carbon for each core are shown in Table 3. The results of the chemical analyses of the sediment composites and the field blank are provided in Tables 4 and 5.

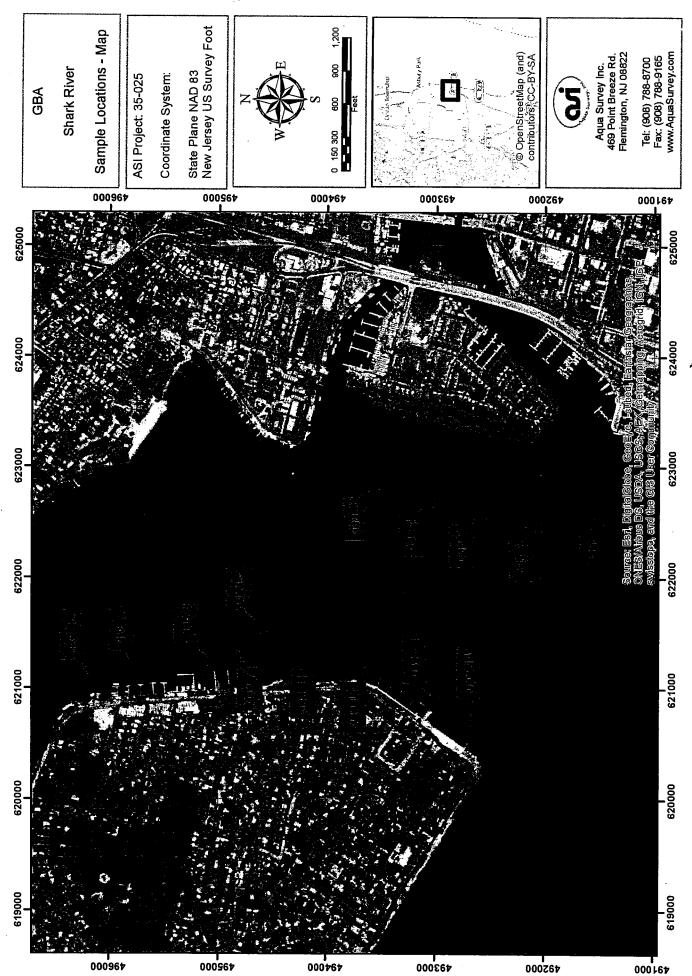


Figure 1. Site Map

Table 1 DGPS Coordinates

Location	Northings	Eastings
038-1	491626.4	622801.4
038-2	492022.8	622483.9
038-3	492557.5	622600.4
038-4	493021.3	622701.3
038-5	493529.2	622859.7
038-6	494594.2	621557.0
038-7	494796.0	621363.1
038-8	495067.1	621253.3
038-9	495742.5	621104.6
038-10	496138.0	621058.3
039-11	494116.4	621355.4
039-12	493622.2	621228.0
039-13	492986.7	620882.9
039-14	492687.0	620620.6

Table 2 Sample Identification and Compositing Scheme

Sample Name	Sample ID	Composite
038-1	20150273	Composite A
038-2	20150274	20150288
038-3	20150275	Discrete Sample Core 038-3
038-4	20150276	Composite B
038-5	20150277	20150289
038-6	20150278	
038-7	20150279	Composite C 20150290
038-8	20150280	20130290
038-9	20150281	Composite D
038-10	20150282	20150291
039-11	20150283	
039-12	20150284	Composite E
039-13	20150285	20150292
039-14	20150286	
Field Blank	20150287	

Grain Size Distribution (USCS Classification), Percent Moisture and TOC

Table 3

Sample ID	ASI ID#	% Gravel	o ivel		% Sand		%	% Clav	သွ	Cu	% Moisture	TOC	% TOC of Dry
		Coarse	Fine	Coarse	Medium	Fine						1144	Weight
038-1	20150273	0.0	0.2	0.2	0.7	58.8	24.7	15.4	12.18	66.95	34.5	14,790	1.48
038-2	20150274	0.0	0.1	0.1	0.4	65.2	20.6	13.6	8.81	37.11	34.8	11,203	1.12
Comp A	20150288	0.1	0.3	0.2	9.0	9'19	23.7	13.5	7.70	44.60	34.9	12,752	1.28
038-3	20150275	0.0	0.0	0.0	8.0	34.9	47.2	17.1	2.54	42.44	59.5	26,860	2.69
038-4	20150276	0.5	1.6	0.3	6.0	32.7	43.4	21.1		1	51.2	23,381	2.34
038-4	20150276 dup	0.2	0.4	0.0	0.4	33.6	44.0	21.4			-		
038-4	20150276 trip	0.0	0.0	0.0	5.0	32.9	46.7	19.9	1				
038-5	20150277	0.0	0.0	0.0	0.4	8.8	9.89	22.2			64.2	37,776	3.78
Comp B	20150289	0.0	0.0	0.1	0.4	24.4	8.09	14.3	4.83	36.98	5.95	27,511	2.75
9-860	20150278	0.0	0.0	0.0	0.5	59.2	25.4	14.9	99'9	54.42	38.9	14,385	1.44
038-7	20150279	0.0	0.0	0.0	0.2	17.7	59.9	22.2			60.1	31,149	3.11
8-860	20150280	0.0	0.0	0.0	0.1	7.4	73.8	18.7			64.4	36,148	3.61
Comp C	20150290	0.0	0.0	0.0	0.3	35.3	48.5	15.9	1.22	23.64	53.2	23,867	2.39
Comp C	20150290 dup	0.0	0.0	0.0	0.2	36.0	49.6	14.2	2.56	36.70			
Comp C	20150290 trip	0.0	0.0	0.0	0.3	36.8	47.5	15.4	1.96	21.26			
038-9	20150281	0.0	0.0	0.0	0.1	5.6	6.77	16.4]	9.99	36,879	3.69
038-10	20150282	0.0	0.0	0.0	0.2	2.3	73.7	23.8			0.99	40,516	4.05
Comp D	20150291	0.0	0.0	0.0	0.1	4.1	76.4	19.4			66.2	38,509	3.85

61.6+1.2=62.8 23.7 13.5 24.9 60.8 14.3 35.6 48.5 15.9 11.5 63.6 19.4 27.8 55.6 16.6

Grain Size Distribution (USCS Classification), Percent Moisture and TOC

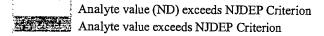
Table 3 (continued)

Sample ID	# ŒI IS	% Grav	% Gravel		% Sand		#liS %	. %	သ	Cu	%	TOC	% TOC of Dry
		Coarse	Fine	Coarse	Medium	Fine	1110	Clay			TATOTAT	mdd	Weight
039-11	20150283	0.0	0.0	0.0	0.3	21.8	64.2	13.7	2.80	25.55	55.8	26,831	2.68
039-11	20150283 dup	0.0	0.0	0.0	0.2	21.6	62.9	15.3	2.14	21.22			
039-11	20150283 trip	0.0	0.0	0.0	0.2	18.9	66.1	14.8	1.44	14.42			
039-12	20150284	0.0	0.0	0.0	5.0	10.4	4.79	21.7			63.1	34,121	3.41
039-13	20150285	0.0	0.0	0.0	0.2	1.9	8.87	19.1	i		67.5	42,530	4.25
039-14	20150286	0.0	0.0	0.0	6.0	4.0	78.1	17.6		1	68.0	38,135	3.81
Comp E	20150292	0.0	0.0	0.0	6.0	11.2	9.89	19.9	1.53	23.96	62.9	35,087	3.51
Comp E	20150292 dup										62.9		
Comp E	20150292 trip										62.9		

1.4 5.12 25.6 8.4 5.000 16.6

Chemical Analysis Tables Information Page

List of Data Qualifiers:


- J = Estimated value; the result is less than the LOQ but greater than or equal to the MDL
- ND = Not detected
- P = Concentration difference between the primary and confirmation column > 40%. The lower result is reported.
- V = Concentration difference between the primary and confirmation column > 100%. The reporting limit is raised due to this disparity and evident interference.

Regulatory Standards:

Bulk Sediment Standards: Tables 1A and 1B, Residential Direct Contact Health Based Criteria and Soil Remediation Standards, N.J.A.C 7:26D Remediation Standards, June 2, 2008.

If the PQL for a specific analyte is greater than the most conservative health-based criterion then the PQL supersedes the criterion and is used as the Direct Contact Soil Remediation standard.

Note: Shaded values indicate that regulatory sediment or water criteria have been exceeded.

Semivolatile Analysis of Bulk Sediment (NJDEP, Residential)

Table 4a

					Onamended		Unamended	ווחבה		Unamended	papua	
		NJDEP Residential Direct		Sedi (Units	Sediment (Units:ug/kg)		Sediment (Units:ug/kg)	nent ug/kg)		Sediment (Units:ug/kg)	nent ug/kg)	
		Contact Soil		Con	Comp A		Core 038-3	38-3		Comp B	p.B	
		Standards		2015	20150288		20150275	275		20150289	1289	
			PQL*	782	7825460		7825459	459		7825461	461	İ
Analyte Name	CAS No.	ug/kg (ppb)	ug/kg	Result	RL	ò	Result	ΣĽ	0	Result	Æ	0
1,1'-Biphenyl	92-52-4	3100000	200	Ð	53	ΩN	ΩN	83	QN	R	98	E
1,2,4-Trichlorobenzene	120-82-1	73000	5	QN	53	ND	ΩN	83	QX	QX	08	£
1,2-Dichlorobenzene (o-Dichlorobenzene)	95-50-1	5300000	5	ND	53	ΩN	ΩN	83	Ð	ą	8	Ð
1,3-Dichlorobenzene (m-Dichlorobenzene)	541-73-1	5300000	2	Ð	53	ND	ND	83	QN	Q	8	욷
1,4-Dichlorobenzene (p-Dichlorobenzene)	106-46-7	2000	2	QN	53	ND	ND	83	ND	QN	80	£
1,2-Diphenylhydrazine	122-66-7	700	700	Q	53	ND	ND	83	ND	ND	8	£
2,4,5-1 richlorophenol	95-95-4	6100000	200	Ð	53	ND	ND	83	ND	QN	8	£
2,4,6-Trichlorophenol	88-06-2	19000	200	ND	23	ND	ND	83	ΩN	QN	8	Q
2,4-Dichlorophenol	120-83-2	180000	200	ND	23	ΩN	QN	83	ΩN	Q	8	£
2,4-Dimethylphenol	105-67-9	1200000	200	ND	53	ΩN	ND	83	ΩN	Ω	08	£
2,4-Dinitrophenol	51-28-5	120000	300	ND	1600	ΩN	QN	2500	Ð	Q.	2400	QZ
2,4-Dinitrotoluene	121-14-2	700	200	ND	0.2	Ð	Ð	420	£	QN	400	£
2,6-Dinitrotoluene	606-20-2	700	200	ND	23	QN	QN	83	ΩN	Ð	8	£
2,4-Dinitrotoluene/2,6-Dinitrotoluene mix	25321-14-6	700	200	ND	270	QΝ	£	420	£	£	400	g
2-Chlorophenol (o-chlorophenol)	95-57-8	310000	700	ND	53	QN	QN	83	£	£	98	呈
2-Methylnaphthalene	91-57-6	230000	170	30	27		21	43	-	19	41	-
2-Methylphenol (o-Cresol)	95-48-7	310000	200	QN.	53	ND	ND	83	ΩN	QN	8	£
2-Nitroaniline	88-74-4	39000	300	Ð	53	ND	ND	83	ΩN	Q	08	呈
3,3'-Dichlorobenzidine	91-94-1	1000	200	Q	530	ND	ND	830	ND	QN	800	Ð
4,6- Dinitro-2-methylphenol (4,6-Dinitro-o-cresol)	534-52-1	9009	300	ND	800	ND	ND	1300	Ð	Ð	1200	£
4-Methylphenol (p-Cresol)	106-44-5	31000	200	62	53		120	83		63	2	-
Acenaphthene	83-32-9	3400000	200	24.	27	J	20 .	43	'n	15	41	5
Acenaphthylene	208-96-8	N/A	200	65	27		32	43	ĭ	33	14	-
Acetophenone	98-86-2	2000	200	N)	53	ΩN	ΩN	83	ΩN	Q.	8	Ð
Anthracene	120-12-7	17000000	200	. 160	27		68	43		65	14	
Atrazine	1912-24-9	210000	200	ND	270	ND	CIN	420	£	QN	400	ND
Benzaldenyde	100-52-7	6100000	200	ND	270	ΩN	Ð	420	£	£	400	ΩN

Semivolatile Analysis of Bulk Sediment (NJDEP, Residential) (continued)

Table 4a continued

ASI Job # 35-025				Unam	Unamended		Unamended	anded		Unamended	nded	
		NJDEP		Sedin	Sediment		Sediment	nent		Sediment	ent	
		Residential Direct	'	(Units:	(Units:ug/kg)		(Units:ug/kg)	ug/kg)		(Units:ug/kg)	ıg/kg)	
	•	Contact Soil		Сош	Сотр А		Core 038-3	138-3		Comp B	рВ	
		Standards	!	2015	20150288		20120275	1275		20150289	687	
			PQL*	7825460	9460		7825459	459		7825461	461	
Analyte Name	CAS No.	ng/kg (ppb)	ng/kg	Result	RL	ò	Result	RL	ð	Result	RL	0
Benzidine	92-87-5	700	700	ND	5300	ΩN	ND	8300	QN	QN	8000	g
Benzo(a)anthracene (1,2-Benzanthracene)	26-55-3	009	200	340	27		170	43		180	41	
Benzo(a)pyrene	50-32-8	200		370 W	27		180	43		180	41	
Benzo(b)fluoranthene (3,4-Benzofluoranthene)	205-99-2	009	200	450	27		230	43		210	41	
Benzo(g,h,i)perylene	191-24-2	380000000	200	220	27		120	43		110	41	
Benzo(k)fluoranthene	207-08-9	0009	200	140	27		100	43		- 6	41	
bis(2-Chloroethyl)ether	111-44-4	400	200	Q	53	ΩN	ΩN	83	N ON	ND	80	ND
Bis(2-chloroisopropyl) ether	39638-32-9	23000	.500	Ω	53	ΩN	Ð	83	£	QN	80	ΩN
bis(2-Ethylhexyl)phthalate	117-81-7	35000	700	Ð.	270	Ð	£	430	Ð	QN	410	ΩN
Butyl benzyl phthalate	85-68-7	1200000	200	Q	270	Ŕ	£	420	£	Ð	400	ΩŽ
Caprolactam	105-60-2	31000000	200	QN.	270	QN	£	420	£	Q.	400	ΩŽ
Carbazole	86-74-8	24000	200	33	53	_	Ð	83	£	Q	8	Ð
Chrysene	218-01-9	62000	200	330	27		170	43		160	41	
Dibenz(a,h)anthracene	53-70-3	200	200	63	27		20	43	Ţ	35	41	ſ
Diethylphthalate	84-66-2	49000000	200	B	270	ND	Ð	420	Ω	ND	400	ND
Di-n-butylphthalate	84-74-2	6100000	200	QN N	270	ND	ND	420	ΩN	ND	400	QN
Di-n-octylphthalate	117-84-0	2400000	200	ND	270	ND	ND	420	ON.	ND	400	ND
Fluoranthene	206-44-0	2300000	200	500	27		290	43		250	41	
Fluorene	L-EL-98	2300000	200	43	27		27	43	J	21	41	J
Hexachloro-1,3-butadiene	84-68-3	0009	200	ΩN	53	ΩN	Œ	83	QN.	UN.	08	MD
Hexachlorobenzene	118-74-1	300	200	QN	27	ΩN	ΩN	43	Ð	ND	41	ND
Hexachlorocyclopentadiene	77-47-4	45000	700	£	800	Ð	QN	1300	Ð	Ð	1200	ND
Hexachloroethane	67-72-1	35000	200	£	270	ΩN	Ð	420	QN	QN	400	QN
Indeno(1,2,3-cd)pyrene	193-39-5	009	200	130	27	!	96	43	!	201	4	
Isophorone	78-59-1	510000	700	Q	53	Q	£	83	£	Q	æ	2
Naphthalene	91-20-3	0009	200	53	27		35	43	-	39	41	-
Nitrobenzene	98-95-3	31000	500 200	£	53	g	Ð	83	£	ND	80	ND
N-Nitrosodimethylamine	62-75-9	700	700	QN.	270	ΩN	QN	420	ND	ND	400	QN
N-Nitroso-di-n-propylamine	621-64-7	200	200	ND.	53	ND	ΩN	83	MD	ND	08	ND
N-Nitrosodiphenylamine	86-30-6	00066	200	£	53	ΩN	Ω	83	ND	ND	80	ΩN
Pentachlorophenol	87-86-5	3000	300	ND	270	ND	ON	430	QN	ND	410	ND
Phenanthrene	85-01-8	N/A	200	270	7.7		150	43		100	41	
Phenoi	108-95-2	18000000	200	£	53	QN	Q	83	Ð	ND DI	08	ND
Pyrene	129-00-0	1700000	700	540	27		290	43		250	41	

^{* =} Required Practical quantitation level, N.J.A.C. 7:26E-1.8. N/A - Not Applicable, no value on the NJDEP Residential Direct Contact Health Base Criteria and Soil Remediation Standards Table 1.A.

Pesticide/Arochlor Analysis of Bulk Sediment (NJDEP, Residential)

Table 4a continued

				Unamended	ended		Unamended	nded	_	Unamended	nded	
		NJDEP Residential Direct		Sediment (Units:ug/kg)	nent ug/kg)		Sediment (Units:ug/kg)	ient ig/kg)		Sediment (Units:ug/kg)	nent ng/kg)	
		Contact Soil		СотрА	ρΑ		Core 038-3	38-3		Comp B	p B	
		Standards		20150288	0288		20150275	275		20150289	586	
			PQL*	7825460	460		7825459	459		7825461	461	
Analyte Name	CAS No.	ug/kg (ppb)	ug/kg	Result	RL	ð	Result	RL	ð	Result	RL	0
4,4'-DDD	72-54-8	3000	3	3.7	14	JP	32	43	J	9.5	20	-
4,4'-DDE	72-55-9	2000	3	QN	14	ND	ND	43	ND	ND	20	ΩÑ
4,4'-DDT	50-29-3	2000	3	ND	14	ND	ΩN	43	ON.	ND	20	Ð
Aldrin	309-00-2	40	2	7.4	9.9		ND	21	ΩN	7.3	6.6	JЪ
alpha-HCH (alpha-BHC)	319-84-6	100	2	Q.	9.9	ND	ND	21	ND	ND	6.6	QN
beta-HCH (beta-BHC)	319-85-7	400	2	ND	8	ΩN	39	25	P	ND	12	ΩN
Lindane (gamma-HCH) (gamma-BHC)	58-89-9	400	2	QV	9.9	Λ	ND	21	ND	18	6.6	
alpha-Chlordane	5103-71-9	200	2	QN.	9.9	ΩN	ND	21	ND	ND	6.6	£
gamma-Chlordane	5103-74-2	200	2	QN	9.9	ND	ND	21	ΩN	ND	6.6	ND
Chlordane	57-74-9	200	2	0.0		QN	0.0		ND	0.0		£
Dieldrin	60-57-1	40	3	ND	14	ND	ND.	43	ON.	ΩN	70	S
Endosulfan I	9-86-656	470000	3	3.3	9.9	J	Ð	21	Λ	ND	6.6	£
Endosulfan II	33213-65-9	470000	3	ND	14	ND.	DN.	43	ON.	_ND_	20	Ð
Endosulfan I and II (alpha and beta)	115-29-7	470000	3	3.3		J	0.0		ND	0.0		ND
Endosulfan sulfate	1031-07-8	470000	3	ND	14	ND	21	43	JP	ND	20	ΩN
Endrin	72-20-8	23000	3	ND	14	ND	ND	43	ON.	QN	20	g
Heptachlor	76-44-8	100	2	UD	9.9	Λ	ΝD	21	ND	ND	6.6	£
Heptachlor epoxide	1024-57-3	70	7	Q2	6.6	>	26	. 21	0	3.2	6.6	J
Methoxychlor	72-43-5	390000	20	ΩN	53	QΝ	Q	170	Ω	ND	80	Ð
Ioxaphene	8001-35-2	009	200	ΩN	260	Ð	Q.	830	ΩN	ND	390	ND
Arochlor-1016	12674-11-2	200	8	QZ	27	ΩN	Q	42	ÓΝ	ND	40	ND
Arochlor-1221	11104-28-2	200	30	QN	27	ND	ND	42	ON.	QN	40	ND
Arochlor-1232	11141-16-5	200	30	Ð	27	ND	_ QN	42	QN	ND	40	QN.
Arochlor-1242	53469-21-9	200	30	Ð	27	QN	ND ND	42	ND	UN	40	£
Arochlor-1248	12672-29-6	200	30	Ð	27	QN	ND	42	ND	ND	40	QN
Arochlor-1254	11097-69-1	200	30	15	27	J	Ð	42	ND	14	40	J
Arochlor-1260	11096-82-5	200	30	£	27	Ð	Ð	42	Ð	ND	40	ND
Iotal Arochlor(SUM)	1316-31-1	000	Ç			,						

¹ When summing compounds, NDs are counted as zero.

Metals Analysis of Bulk Sediment (NJDEP, Residential)

Table 4a continued

ASI Job # 35-025				Unamended	ended		Unamended	papu		Unamended	papue	
		NJDEP Residential Direct		Sediment (Units:mg/kg)	nent ng/kg)	,	Sediment (Units:mg/kg)	nent ng/kg)		Sediment (Units:mg/kg)	nent ng/kg)	
		Contact Soil	<u>' </u>	Comp A	ρA		Core 038-3	38-3		Comp B	p B	
		Standards		20150288	0288		20150275	275		20150289	1289	
			PQL*	7825460	460		7825459	459		7825461	461	
Analyte Name	CAS No.	mg/kg (ppm)	mg/kg	Result	RL	Ò	Result	RL	0	Result	RL	٥
Aluminum	7429-90-5	78000	20	9790	31.9		12700	50.4		15800	46.2	l
Antimony	7440-36-0	31	9	3.81	3.19		3.98	5.04	_	5.38	4.62	
Arsenic**	7440-38-2	16	1	8.39	3.19		9.85	5.04		15.1	4.62	
Barium	7440-39-3	16000	20	30.4	0.797		39.6	1.26		54.8	1.16	
Beryllium	7440-41-7	16	0.5	0.907	0.797		1.11	1.26	,	1.27	1.16	
Cadmium	7440-43-9	78	0.5	0.306	0.797	ŗ	0.516	1.26	-	0.816	1.16	┝
Cobalt	7440-48-4	1600	. 5	4.92	0.797		5.8	1.26		7.58	1.16	
Copper	7440-50-8	3100	3	25.0	1.59		34.5	2.52		66.4	2.31	
Lead	7439-92-1	400	1	26.4	2.39		26.0	3.78		59.0	3.470	
Manganese	7439-96-5	11000	2	139	0.797		183	1.26		252	1.16	
Mercury	7439-97-6	23	0.1	0.433	0.149		0.385	0.24		1.08	0.232	
Nickel	7440-02-0	1600	4	14.3	1.59		22.2	2.52		25.3	2.33	
Selenium	7782-49-2	390	4	2.08	3,19	J	2.29	5.04	J	2.97	4.62	-
Silver	7440-22-4	390	1	0.835	0.797		ND	1.26	ND	1.71	1.16	
Thallium	7440-28-0	5	3	1.52	4.78	J	ND	7.56	ΩN	2.21	7.00	-
Vanadium	7440-62-2	. 78	5	37.7	0.797		48.7	1.26		61.3	1.16	
Zinc	7440-66-6	23000	9	112	3.19		127	5.04		189	4.62	
Cyanide	57-12-5	1600	3	ND	0.780	ND	ND	1.20	Ð	ΩN	1.20	g
Chromium, total	7440-47-3	N/A	N/A	51.8	2.39		27.7	3.78		86.4	3.47	
Hexavalent chromium	18540-29-9	N/A	N/A	ON.	2.40	ND	ND	3.8	Ð.	QN	3.60	£
Trivalent chromium	16065-83-1	N/A	N/A	51.8	2.40		57.7	3.8		86.4	3.60	
% Moisture	MOIST	N/A	N/A	37.9			60.3			58.4		
%Solids	N/A	N/A	N/A	62.1		,	39.7			41.6		

^{**} Direct contact standard for arsenic is based on natural background.

Semivolatile Analysis of Bulk Sediment (NJDEP, Residential)

Table 4b

SI Job #35-025	<u> </u>			Unamended	nded		Unamended	nded		Unamended	nded	<u>:</u>
		NJDEP Residential Direct		Sediment (Units:ug/kg)	ient ig/kg)	-	Sediment (Units:ug/kg)	ent (g/kg)		Sediment (Units:ug/kg)	nent 1g/kg)	
		Contact Soil		Comp C	ာင		Comp D	a		Comp E	P.E.	
		Standards		20150290	290		20150291	291		20150292	267	
			PQL*	7825462	162		7825463	163		7825464	464	
nalyte Name	CAS No.	ng/kg (ppb)	ug/kg	Result	RL	0	Result	RE	õ	Result	RL	0
1'-Biphenyl	92-52-4	3100000	200	QN	74	QX	ΩN	100	ΩN	ΩN	66	£
2,4-Trichlorobenzene	120-82-1	73000	5	ON.	74	ND	ND	100	ND	ND	66	£
2-Dichlorobenzene (o-Dichlorobenzene)	95-50-1	5300000	5	ON.	74	ΩN	ND	100	ND	ND	66	Ω
3-Dichlorobenzene (m-Dichlorobenzene)	541-73-1	5300000	5	ON	74	ND	UN	100	ND	ND	66	Ω
4-Dichlorobenzene (p-Dichlorobenzene)	106-46-7	2000	5	QN	74	ΩN	ND	100	ND	ND	66	ND
2-Diphenylhydrazine	122-66-7	700	700	Q	74	ND	ND	100	ND	ND	66	ND
4,5-Trichlorophenol	95-95-4	6100000	200	S	74	ND	ND	100	ND	ND	66	ND
4,6-Trichlorophenol	88-06-2	19000	200	QN	74	ND	ND.	100	ND	ND	66	QN
4-Dichloropheno1	120-83-2	180000	200	QN O	74	ΩN	ΩN	100	ND	ND	66	ND
4-Dimethylphenol	105-67-9	1200000	200	Ð.	74	ΩN	ΩN	100	ND	ND	66	ON
4-Dinitrophenol	51-28-5	120000	300	£	2200	ND	Ð	3000	ND	QN	3000	ND
4-Dinitrotoluene	121-14-2	700	200	Ð.	370	ND	ND	200	ND	QN	490	ND
6-Dinitrotoluene	606-20-2	700	200	Q.	74	ND	ND	100	ND	UN	66	ND
4-Dinitrotoluene/2,6-Dinitrotoluene mix	25321-14-6	700	200	ON.	370	ΩN	ND	200	ND	ND	490	ND
Chlorophenol (o-chlorophenol)	95-57-8	310000	200	MD	74	ND	ND	100	ND	ND	66	ND
Methylnaphthalene	91-57-6	230000	170	23	38	J	20	51	J	24	20	J
Methylphenol (o-Cresol)	95-48-7	310000	200	Ð	74	ΩN	ND	100	ND	ND	66	ND
Nitroaniline	88-74-4	39000	300	Q.	74	ND	ND	100	ND	ND	66	ND
3-Dichlorobenzidine	91-94-1	1000	200	£	740	Ð	£	1000	Q	ND	066	ND
5- Dinitro-2-methylphenol (4,6-Dinitro-o-cresol)	534-52-1	0009	300	Œ	1100	ΩN	ND DI	1500	ND DI	ND	1500	ND
Methylphenol (p-Cresol)	106-44-5	31000	200	53	74	J	ND	100	ND	ND	66	ΩN
cenaphthene	83-32-9	3400000	200	18	38	ſ	15	. 51	J	10	50	ſ
cenaphthylene	208-96-8	N/A	200	36	38	J.	27	51	J	32	90	J
cetophenone	2-98-86	2000	200	ON.	74	QN	ΩN	100	ND	ND	66	ON.
nthracene	120-12-7	17000000	200	70	38∙		69	51		46	- 50	ſ
razine	1912-24-9	210000	200	QN	370	ND	ON	200	ND	UN	490	ND
nzaldehyde	100-52-7	6100000	200	ND	370	ND	ON	200	ND	ND	490	ND

¹ When summing compounds, NDs are counted as zero.

Semivolatile Analysis of Bulk Sediment (NJDEP, Residential) (continued)

Table 4b continued

			,	Codi								
					Sediment		Sediment	nent		Sediment	l luon	
		NJDEF Residential Direct		(Units	(Units:ug/kg)		(Units:ug/kg)	ug/kg)		(Units:	(Units:ug/kg)	
		Contact Soil		Соп	Сотр С		Сошр D	Qd		Con	Comp E	
		Standards		2015	20150290		16705107	1291		20150292	1292	
			PQL*	782	7825462		7825463	463		7825464	464	
Analyte Name	CAS No.	(qdd) By/8n	ug/kg	Result	RL	ò	Result	RL	0	Result	ZE.	0
Benzidine	92-87-5	700	700	QN	7400	ΩN	QN	10000	QN	QN	0066	Ŕ
Benzo(a)anthracene (1,2-Benzanthracene)	56-55-3	009	200	160	38		140	51		120	95	
Benzo(a)pyrene	50-32-8	200	200	170	38		150	51		140	20	
Benzo(b)fluoranthene (3,4-Benzofluoranthene)	205-99-2	009	200	210	38		240	51		180	20	
Benzo(g,h,i)perylene	191-24-2	380000000	200	120	38		130	51		110	- 20	
Benzo(k)fluoranthene	207-08-9	0009	200	88	38		66	51		81	20	
bis(2-Chloroethyl)ether	111-44-4	400	700	包	74	ΩŽ	ΩN	100	ΩN	ND	66	N
Bis(2-chloroisopropyl) ether	39638-32-9	23000	200	2	74	Q.	Ð	100	QZ	QN	66	ΩN
ois(2-Ethylnexyl)phithalate	117-81-7	35000	200		380	ĝ	£	510	£	ΩN	200	ΩŽ
Butyl benzyl phthalate	85-68-7	1200000	200		370	2		200	£ !	QN	490	2
Capionaciani	103-60-2	3100000	007	QN S	3/0			200		QN	490	2
Caroazole	80-/4-8	24000	2007		74	QN		100	g	PD PD	66	
Carysene	218-01-9	9000	700	0/1	38	ŀ	130	51		120	20	١
Dibenz(a,n)anthracene	53-70-3	200	700	34.0	38	-	49	21		45	50	-
Diethylphthalate	84-66-2	49000000	700	Ð	370	ΩÑ	Ω	200	ND	ND	490	ND
Di-n-butylphthalate	84-74-2	6100000	200	Ð	370	ND	ND	200	ΩN	ND	490	ΝĎ
Di-n-octylphthalate	117-84-0	2400000	200	Ð	370	ND	ND	500	ΩN	ND	490	ND
Fluoranthene	206-44-0	2300000	200	260	38		ND	51	ND	200	20	
Fluorene	86-73-7	2300000	200	29.0	38	J	25	51	J	22	20	-
Hexachloro-1,3-butadiene	87-68-3	0009	200	ΩŃ	74	ND	ND	100	ΩN	ND	66	Ą
Hexachlorobenzene	118-74-1	300	200	Œ	38	ND	ND	51	ΩN	ND	50	ND
Hexachlorocyclopentadiene	77-47-4	45000	200	Ð	1100	ND	ND	1500	ND	ND	1500	ND
Hexachloroethane	67-72-1	35000	200	£	370	ΩN	ND	· 500	Ð	ND	490	QN
Indeno(1,2,3-cd)pyrene	193-39-5	009	500	001	38		120	51		97	20	
Isophorone	78-59-1	510000	500	g	74	Ω	£	200	Ð	ΩN	66	ᅱ
Naphthalene	91-20-3	9009	200	45	38		35	51	J	39	20	J
Nitrobenzene	98-95-3	31000	200	N N	74	ND	ND	100	ND	ND	66	QN
N-Nitrosodimethylamine	62-75-9	700	700	ND	370	ND	ND	200	QN	ND	490	ΩN
N-Nitroso-di-n-propylamine	621-64-7	200	200	ND	74	ND	QN	100	QN	ND	66	Ð
N-Nitrosodiphenylamine	86-30-6	00066	200	Ω	74	ND	Œ	100	QN	ND	66	ΩN
Pentachlorophenol	87-86-5	3000	300	QN	380	ND	ND	510	ND	ND	500	QN
Phenanthrene	85-01-8	N/A	200	160	38		94	51		82	20	
Phenol B.	108-95-2	1800000	200	Ð	74	ΩN	Q	100	Ω	ND	66	ΝD
ryiene	129-00-0	1700000	200	290	38		230	51		190	50	

^{* =} Required Practical quantitation level, N.J.A.C. 7:26E-1.8. N/A - Not Applicable, no value on the NJDEP Residential Direct Contact Health Base Criteria and Soil Remediation Standards Table 1A.

Pesticide/Arochlor Analysis of Bulk Sediment (NJDEP, Residential)

Table 4b continued

Unamended Sediment (Units:ug/kg) Comp D 20150291 Comp D 20150291 Q 1 Z0150291 NB 1 Q 1 Result RL Q 1 ND 1 ND 13 ND ND ND 1 ND 1 ND	100 10 1 10 1			İ	I						I		
Contact Soil Cont	C70-CC # One ICY		NJDEP		Unam Sedi	ended ment		Uname Sedim	ended nent		Uname Sedin	nded	
Contact Solid Renders Cont			Residential Direct		(Units	ug/kg)		(Units:1	ug/kg)		(Units:1	ıg/kg)	
Programma-BHC) CAS No. ug/kg (ppb) vg/kg (ppb) Reault (ppg) RL Q Reault (ppg) RL Q Reault (ppg) RC T7825463 T782			Contact Soil Remediation		Con	D C		Com	αď		Сош	D E	
Policy P			Standards		2015	0290		20150	167		20150	292	
CAS No. ug/kg (ppb) ug/kg Reault RL Q RL				PQL*	782	3462		7825	463		7825	164	
17-24-8 3000 3 32 19 17 26 1 16 17-25-9 2000 3 84 19 17 26 1 10 17-25-9 2000 3 84 19 17 18 19 10 18-84-6 100 2 ND 92 ND 13 ND ND 18-84-6 100 2 ND 92 ND 13 ND ND 18-84-6 100 2 ND 92 ND 13 ND ND 18-84-6 100 2 ND 92 ND ND 13 ND ND 18-84-6 100 2 ND 92 ND ND 13 ND ND 18-84-6 100 2 ND 92 ND ND 13 ND ND 18-84-6 100 2 ND 92 ND ND 13 ND ND 18-84-6 100 2 ND 92 ND ND 13 ND ND 18-84-6 100 2 ND 92 ND ND 13 ND ND 18-84-6 100 2 ND 19 ND 13 ND ND 18-84-6 100 2 ND 19 ND 19 ND ND 18-84-7 100 2 ND 19 ND ND ND 18-84-7 100 3 ND 34 ND ND ND ND 18-84-7 100 30 ND 38 ND ND 30 ND ND 18-84-7 100 30 ND 38 ND ND 32 ND ND 18-84-7 100 30 ND 38 ND ND 32 ND ND 18-84-8 100 30 ND 38 ND ND 32 ND ND 18-84-8 100 30 ND 38 ND ND 32 ND ND 18-84-9 100-43-6 200 30 ND 38 ND ND 32 ND ND 18-84-9 100-43-6 200 30 ND 38 ND ND 32 ND ND 18-84-9 100-43-6 200 30 ND 38 ND ND 32 ND ND 18-84-9 100-43-6 200 30 ND 38 ND ND 32 ND ND 18-84-9 100-43-6 200 30 ND 38 ND ND 32 ND ND 18-84-9 100-43-6 200 30 ND 38 ND ND 32 ND ND 18-84-9 100-43-6 200 30 ND 38 ND ND 20 ND ND 18-84-9 100-43-6 200 30 ND 38 ND ND ND ND ND 18-84-9 100-43-6 200 30 ND 38 ND ND ND ND ND ND 18-84-9 100-43-6 200 30 ND 38 ND ND ND ND ND 18-84-9 100-43-9 200 30 ND 38 ND ND ND ND	Analyte Name	CAS No.	ug/kg (ppb)	ug/kg	Result	RL	ò	Result	RI.	o	Result	굺	0
The color of the	4,4'-DDD	72-54-8	3000	3	32	19		17	26	١.,	16	25	
50-29-3 2000 3 ND 19 N ND 14 ND 15 ND Ab Ab Ab Ab Ab Ab Ab A	4,4'-DDE	72-55-9	2000	3	8	19	ſ	8.2	26	<u>.</u>	Ω	25	£
pha-BHC) 319-80-2 40 2 ND 92 ND 13 ND 46 a-BHC) 319-84-6 100 2 ND 92 ND 13 ND ND a-BHC) 131-88-7 400 2 ND 11 ND	4,4'-DDT	50-29-3	2000	3	ΩN	19	Λ	ND	26	Λ	£	25	£
Parameter (1) 319-84-6 (100) 100 2 ND 92 ND 13 ND ND PaBHC(1) (gamma-BHC) 58-89-9 400 2 36 92 P 15 15 19 ND Ine-HCH) (gamma-BHC) 58-89-9 400 2 36 92 P 15 15 19 ND Ine-HCH) (gamma-BHC) 5103-71-2 200 2 36 92 P 15 15 19 ND Ine-HCH) (gamma-BHC) 5103-74-2 200 2 ND 92 19 15 19 ND ND 10 ND 10 ND 10 ND 10 ND 10 ND ND 10 ND	Aldrin	309-00-2	40	2	QN	9.2	ND	QN	13	Ð	4.6	12	2
and HCJD (gamma-BHC) 319-88-7 400 2 ND 11 ND 15 15 17 ND na-HCJD (gamma-BHC) 58-89-9 400 2 2 2 6 9.2 P 25 13 P ND nace 5103-71-2 200 2 ND 9.2 ND ND ND ND ND dee 5103-74-2 200 2 0.0 ND 9.2 ND ND </td <td>alpha-HCH (alpha-BHC)</td> <td>319-84-6</td> <td>100</td> <td>2</td> <td>£</td> <td>9.2</td> <td>ΩN</td> <td>ND</td> <td>13</td> <td>Ω</td> <td>ND</td> <td>12</td> <td>ΩN</td>	alpha-HCH (alpha-BHC)	319-84-6	100	2	£	9.2	ΩN	ND	13	Ω	ND	12	ΩN
National Columnia C	beta-HCH (beta-BHC)	319-85-7	400	2	Ð	11	ND	15	15	JP	ND	15	£
the control of the control	Lindane (gamma-HCH) (gamma-BHC)	58-89-9	400	2	26	9.2	Ь	25	13	P	QN	12	£
ance 5103-74-2 200 2 ND 9.2 ND 13 ND ND 66-57-1 60-57-1 200 2 0.0 ND ND 0.0 ND ND 0.0 ND 0.0 ND 0.0 ND ND 0.0 ND 0.0 ND 0.0 ND 0.0 ND 0.0 ND 0.0 ND 0.0<	alpha-Chlordane	5103-71-9	200	2	ND	9.7	ND.	QN.	13	£	QN	12	Q
57-74-9 200 2 0.0 ND ND 0.0	gamma-Chlordane	5103-74-2	200	2	ND	9.2	QN	ΩN	13	£	Ð	12	呈
60-57-1 40 3 ND 19 ND 26 ND ND 36 ND ND 19 ND ND <th< td=""><td>Chlordane</td><td>57-74-9</td><td>200</td><td>2</td><td>0.0</td><td></td><td>QN</td><td>0.0</td><td></td><td>QN</td><td>0.0</td><td></td><td>ΩN</td></th<>	Chlordane	57-74-9	200	2	0.0		QN	0.0		QN	0.0		ΩN
nd II (alpha and beta) 33213-65-9 470000 3 ND 9.2 V ND 13 V ND file 115-29-7 470000 3 ND 19 ND 19 26 J ND file 101-07-8 470000 3 ND 19 N ND 19 ND ND ND file 101-07-8 470000 3 ND 19 N ND 15 ND ND <td>Dieldrin</td> <td>60-57-1</td> <td>40</td> <td>3</td> <td>ND</td> <td>19</td> <td>ND</td> <td>QN</td> <td>26</td> <td>Ð</td> <td>Q</td> <td>25</td> <td>æ</td>	Dieldrin	60-57-1	40	3	ND	19	ND	QN	26	Ð	Q	25	æ
Additional betal 33213-65-9 470000 3 ND 19 ND 19 ND 19 ND ND <t< td=""><td>Endosultan I</td><td>959-98-8</td><td>470000</td><td>3</td><td>ΩN</td><td>9.2</td><td>Λ.</td><td>ND</td><td>13</td><td>Λ</td><td>QN.</td><td>12</td><td>Ð</td></t<>	Endosultan I	959-98-8	470000	3	ΩN	9.2	Λ.	ND	13	Λ	QN.	12	Ð
falte and beta) 115-29-7 470000 3 0.0 ND 19 1 0.0 ND 19 ND 10 0.0 ND 10 0.0 ND 10 0.0 ND 10 ND	Endosultan II	33213-65-9	470000	3	ND	19	QN.	19	56	ſ	Q.	25	ΩŽ
fale 1031-07-8 470000 3 37 19 ND 26 V ND fale 72-20-8 23000 3 ND 46 ND 13 ND ND fale 76-44-8 100 2 ND 46 ND 13 ND ND fale 1024-57-3 100 2 16 9.2 P ND 13 ND ND fale 1024-57-3 390000 20 ND 74 ND ND 13 ND ND 10 ND ND 10 ND ND 10 ND ND <t< td=""><td>Endosulfan I and II (alpha and beta)</td><td>115-29-7</td><td>470000</td><td>3</td><td>0.0</td><td></td><td>ND</td><td>19</td><td>П</td><td>J</td><td>0.0</td><td></td><td>ΩN</td></t<>	Endosulfan I and II (alpha and beta)	115-29-7	470000	3	0.0		ND	19	П	J	0.0		ΩN
72-20-8 23000 3 ND 19 V ND 26 ND <	Endosulfan sulfate	1031-07-8	470000	3	37	19		ND	26	>	ΩN	25	£
xide 100 2 ND 46 ND 13 ND N	Endrin	72-20-8	23000	3	ND	19	Λ	QN	26	ΩN	£	25	Q
NATIGE 1024-57-3 70 2 16 9.2 P ND 13 V 4.0 4.0 72-43-5 3900000 20 ND 74 ND ND 100 ND ND 8001-35-2 600 200 ND 37 ND ND 500 ND ND 1104-28-2 200 30 ND 38 ND ND 52 ND ND 11104-28-2 200 30 ND 38 ND ND 52 ND ND 11104-28-5 200 30 ND 38 ND ND 52 ND ND 11104-28-5 200 30 ND 38 ND ND 52 ND ND 11104-1-16-5 200 30 ND 38 ND ND 52 ND ND 11104-1-16-5 200 30 ND 38 ND ND 52 ND ND 11104-1-16-5 200 30 ND 38 ND ND 52 ND ND 11109-1-2-1-9 200 30 ND 38 ND ND 52 ND	Heptachlor	76-44-8	100	2	ND	46	ND	ND	13	QN.	QN	12	Ð.
12-43-5 390000 20 ND 74 ND ND 100 ND ND ND ND ND ND ND	Heptachlor epoxide	1024-57-3	20	7	16	9.2	Ь	Ð	13	Λ	4.0	12	J
12674-11-2 560 ND 370 ND 500 ND ND ND ND ND ND ND	Methoxychlor	72-43-5	390000	20	Ð	74	Ð	Q.	100	QN	ND	100	QN
12674-11-2 200 30 ND 38 ND ND 52 ND ND ND ND ND ND ND N	Loxaphene	8001-35-2	009	200	ND	370	ND	MD	200	QN	QN	490	ΩN
1104-28-2 200 30 ND 38 ND ND 52 ND ND ND 52 ND ND ND ND ND ND ND ND ND ND ND ND ND	Arochlor-1016	12674-11-2	200	30	Q	38	Ð	QN	52	Ð	ND	51	ND
1141-16-5 200 30 ND 38 ND ND 52 ND ND ND 52 ND ND 53469-21-9 200 30 ND 38 ND ND 52 ND ND ND 52 ND ND ND ND ND 52 ND ND ND ND ND ND ND ND ND ND ND ND ND	Arochlor-1221	11104-28-2	200	30	£	38	ΩN	QN.	52	Q.	ND	15	ND
53469-21-9 200 30 ND 38 ND ND S2 ND ND ND ND ND ND ND N	Arochlor-1232	11141-16-5	200	30	EN CH	38	ND	QN	52	QN QN	QN	51	ΩN
12672-29-6 200 30 ND 38 ND ND 52 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND	Arochlor-1242	53469-21-9	200	30	ND ND	38	ND	ND	52	Q.	Q	51	ΩN
11097-69-1 200 30 ND 38 ND ND 52 ND ND ND 11096-82-5 200 30 ND 38 ND ND 52 ND ND ND ND ND ND ND ND ND ND ND ND ND	Arochlor-1248	12672-29-6	200	30	QN	38	ΩN	QN	52	Q	QN	51	ΝD
(SUM) 136-36-3 200 30 ND 38 ND ND 52 ND ND ND (SUM) 1336-36-3 200 30 0.0 ND ND 0.0 ND 0.0 ND 0.0	Arochlor-1254	11097-69-1	200	30	Ð	38	QN	QN	52	Ω	ND	51	ΩN
1336-36-3 200 30 0.0 ND 0.0 ND	Arochior-1260	11096-82-5	200	30	Ð	38	Ð	Ð	52	R	QN	51	ND
	Iotal Arochlor(SUM)	1336-36-3	200	30	0.0		QN	0.0		QN	0.0		ND

¹ When summing compounds, NDs are counted as zero.

* = Required Practical quantitation level, N.J.A.C. 7:26E-1.8. N/A - Not Applicable, no value on the NJDEP Residential Direct Contact Health Base Criteria and Soil Remediation Standards Table 1A.

Metals Analysis of Bulk Sediment (NJDEP, Residential)

Table 4b continued

ASI Job # 35-025				Unamended	ended		Unamended	nded		Unamended	nded	ŀ
		NJDEP Residential Direct	•	Sediment (Units:mg/kg)	nent ng/kg)		Sediment (Units:mg/kg)	ient ng/kg)		Sediment (Units:mg/kg)	ient ng/kg)	
		Contact Soil		Comp C	рС		Comp D	ρD		Comp E	p E	
	-	Standards		20150290	1290		20150291	291		20150292	262	
			PQL*	7825462	462		7825463	463		7825464	164	
Analyte Name	CAS No.	mg/kg (ppm)	mg/kg	Result	RL	0	Result	RL	0	Result	RL	õ
Aluminum	7429-90-5	00087	20	15000	44.6		20300	8.65		19700	87.8	
Antimony	7440-36-0	31	9	4.62	4.46		5.04	5.98	J _	6.35	5.78	
Arsenic**	7440-38-2	19	11	12.9	4.46		16.8	5.98		17.9	5.78	
Barium	7440-39-3	16000	20	51.3	1.12		69.1	1.49		66.5	1.44	
Beryllium	7440-41-7	16	0.5	1.26	1.12		1,45	1.49	J	1.54	1.44	
Cadmium	7440-43-9	78	0.5	0.563	1.12	J	0.858	1.49	ſ	1.06	1.44	J
Cobalt	7440-48-4	1600	- 5	7.33	1.12		9.43	1.49		9.23	1.44	
Copper	7440-50-8	3100	3	57.5	2.23		90.4	2.99		86.4	2.89	
Lead	7439-92-1	400	1	48.7	3.35		77.3	4.48		75.3	4.33	
Manganese	7439-96-5	11000	2	228	1.12		304	1.49		289	1.44	
Mercury	7439-97-6	23	0.1	0.695	0.212		1.05	0.283		1.15	0.296	
Nickel	7440-02-0	1600	4	24.3	2.19		34.9	3.02		31.9	2.89	
Selenium	7782-49-2	390	4	2.54	4.46	J	3.28	5.98	J	3.1	5.78	J
Silver	7440-22-4	390	1	1.45	1.12		1.95	1.49		2.19	1.44	
Thallium	7440-28-0	5	3	1.79	6.57	ı	3.2	90.6	. J	2.36	8.66	<u>-</u>
Vanadium	7440-62-2	78	5	59.9	1.12		73.7	1.49		74.1	1.44	1
Zinc	7440-66-6	23000	9	171	4.46		232	5.98		241	5.78	
Cyanide	57-12-5	1600	3	ND	1.10	ΩN	ND	1.50	ΩN	ND	1.50	ND
Chromium, total	7440-47-3	N/A	N/A	80.8	3.35		99.5	4.48		103	4.33	
Hexavalent chromium	18540-29-9	N/A	N/A	ND	3.30	ΩN	QN	4.60	ΩN	ND	4.50	Ø
Trivalent chromium	16065-83-1	N/A	N/A	80.8	3.30		99.5	4.60		103	4.50	
% Moisture	MOIST	N/A	N/A	55.2			67.2		1.	66.7		
%Solids	N/A	N/A	N/A	44.8			32.8			33.3		

^{**} Direct contact standard for arsenic is based on natural background.

Semivolatile Analysis of Field Blank

Table 5

	<u> </u>	ੁ	(Units: ug/L)	
			20150287	
	_		7825465	
		1	Field Blank	
Analyte	CAS No.	Result	RL	0
1,1'-Biphenyl	92-52-4	QN	1.0	QN
1,2,4-Trichlorobenzene	120-82-1	QN	1.0	QN
1,2-Dichlorobenzene (o-Dichlorobenzene)	95-50-1	QΝ	1.0	ΩN
1,3-Dichlorobenzene (m-Dichlorobenzene)	541-73-1	QN	1.0	ΩN
1,4-Dichlorobenzene (p-Dichlorobenzene)	106-46-7	QN	1.0	QN
1,2-Diphenylhydrazine	122-66-7	QN	1.0	QN
2,4,5-Trichlorophenol	95-95-4	QN	1.0	QN
2,4,6-Trichlorophenol	88-06-2	ND	1.0	ΩN
2,4-Dichlorophenol	120-83-2	QN	1.0	QN
2,4-Dimethylphenol	105-67-9	QN	1.0	QN
2,4-Dinitrophenol	51-28-5	QN	32	QΝ
2,4-Dinitrotoluene	121-14-2	ΩN	5.0	ΩN
2,6-Dinitrotoluene	606-20-2	ON	1.0	QN
2,4-Dinitrotoluene/2,6-Dinitrotoluene mix	25321-14-6	ND	5.0	QN
2-Chlorophenol (o-chlorophenol)	95-57-8	QN	1.0	QN.
2-Methylnaphthalene	91-57-6	QN	0.5	ND
2-Methylphenol (o-Cresol)	95-48-7	QN	1.0	ΩN
2-Nitroaniline	88-74-4	ΩN	1.0	ND
3,3'-Dichlorobenzidine	91-94-1	QN	5.0	ND
4,6- Dinitro-2-methylphenol (4,6-Dinitro-o-cresol)	534-52-1	ND	16	ND
4-Methylphenol (p-Cresol)	106-44-5	ND	1.0	ND
Acenaphthene	83-32-9	ND	0.50	ND
Acenaphthylene	208-96-8	ND	0.50	ND
Acetophenone	98-86-2	ND	1.0	ND
Anthracene	120-12-7	ND	0.50	ND
Atrazine	1912-24-9	ND	5.0	ND
Benzaldenyde	100-52-7	QN	5.0	Ð

Semivolatile Analysis of Field Blank (continued)

Table 5 continued

			Field Blank	
		ਦ 	(Units: ug/L)	
			20150287	
			7825465	
			Field Blank	
Analyte	CAS No.	Result	RL	0
Benzidine	92-87-5	QN	64	ΩN
Benzo(a)anthracene (1,2-Benzanthracene)	56-55-3	ND	0.50	ΩN
Benzo(a)pyrene	50-32-8	QN	0.50	QN
Benzo(b)fluoranthene (3,4-Benzofluoranthene)	205-99-2	GN	0.50	ND
Benzo(g,h,i)perylene	191-24-2	ND	0.50	ND
Benzo(k)fluoranthene	207-08-9	ND	0.50	ΩN
bis(2-Chloroethy1)ether	111-44-4	QN	1.0	QN
Bis(2-chloroisopropyl) ether	39638-32-9	QN	1.0	QN
bis(2-Ethylhexyl)phthalate	117-81-7	ND	5.0	QN
Butyl benzyl phthalate	85-68-7	ND	5.0	ND
Caprolactam	105-60-2	ND	16	ND
Carbazole	86-74-8	QN	1.0	ΩN
Chrysene	218-01-9	QN	05.0	ΩN
Dibenz(a,h)anthracene	53-70-3	ΩN	0.50	ΝD
Diethylphthalate	84-66-2	ND	5.0	ΩN
Di-n-butylphthalate	84-74-2	ND	5.0	ND
Di-n-octylphthalate	117-84-0	QN	5.0	ND
Fluoranthene	206-44-0	QN	0.50	ND
Fluorene	86-73-7	ND	0.50	QN
Hexachloro-1,3-butadiene	87-68-3	ND	1.0	QN
Hexachlorobenzene	118-74-1	ND	0.50	QΝ
Hexachlorocyclopentadiene	77-47-4	ND	16	QN
Hexachloroethane	67-72-1	ND	5.0	QN
Indeno(1,2,3-cd)pyrene	193-39-5	ND	0.50	ΩN
Isophorone	78-59-1	ΩN	1.0	ND
Naphthalene	91-20-3	ΩN	0.50	ND
Nitrobenzene	98-95-3	Œ.	1.0	CIN
N-Nitrosodimethylamine	62-75-9	ND	5.0	QN
N-Nitroso-di-n-propylamine	621-64-7	ND	1.0	_ QN
N-Nitrosodiphenylamine	86-30-6	QN	1.0	ND
Pentachlorophenol	87-86-5	ND	5.0	ND
Phenanthrene	85-01-8	QN	0.50	ND
Phenol	108-95-2	ND	1.0	ND
Pyrene	U-UU-661	CIN	0.50	AID.

Pesticide/Arochlor Analysis of Field Blank

Table 5 continued

	÷	<u> </u>	Rield Rlant	
		' ਦ 	Units: ug/L)	
			20150287	
			7825465	
		F	Field Blank	
Analyte	CAS No.	Result	BI	Ò
4,4'-DDD	72-54-8	CIN	0.017	Ω
4,4'-DDE	72-55-9	CIN	0.017	ΩN
4,4'-DDT	50-29-3	QN.	0.017	ΩŽ
Aldrin	309-00-2	QN	0.0083	ND
alpha-HCH (alpha-BHC)	319-84-6	QΝ	6800.0	Q
beta-HCH (beta-BHC)	319-85-7	ŒN	0.0083	ΩN
Lindane (gamma-HCH) (gamma-BHC)	6-68-85	QN	0.0083	Ω
alpha-Chlordane	5103-71-9	CN ·	0.0083	QN
gamma-Chlordane	76-44-8	QN	0.0083	Ð
Chlordane (alpha and gamma)	57-74-9	0.0		£
Dieldrin	60-57-1	QN	0.017	QN
Endosulfan I	959-98-8	QN	0.0083	ΩN
Endosulfan II	33213-65-9	ON.	0.025	QN
Endosulfan I and II (alpha and beta)	115-29-7	0.0		QΝ
Endosulfan sulfate	1031-07-8	QΝ	0.017	Ð
Endrin	72-20-8	QN	0.017	QN
Heptachlor	76-44-8	QN	0.0083	QN
Heptachlor epoxide	1024-57-3	QN.	0.0083	ΩN
Methoxychlor	72-43-5	ND	0.083	ΩN
Toxaphene	8001-35-2	QN	0.83	QN
Arochlor-1016	12674-11-2	QN	0.41	ON
Arochlor-1221	11104-28-2	QN	0.41	QΝ
Arochlor-1232	11141-16-5	QN	0.41	QΝ
Arochlor-1242	53469-21-9	QN	0.41	αN
Arochlor-1248	12672-29-6	QN	0.41	QN
Arochlor-1254	11097-69-1	CIN	0.41	UN_
Arochlor-1260	11096-82-5	ON	0.41	ND
Total Arochlor(SUM)	1336-36-3	0		ΩN

Metal Analysis of Field Blank

Table 5 continued

ASI Job # 35-025		Ħ	Field Blank	
		Ð	(Units: mg/L)	
			20150287	
			7825465	
		F	Field Blank	
Analyte	CAS No.	Result	RL	δ
Aluminum	7429-90-5	0.0964	0.20	ſ
Antimony	7440-36-0	CIN .	0.02	QN
Arsenic	7440-38-2	ON.	0.002	ΩN
Barium	7440-39-3	0.00065	0.005	ſ
Beryllium	7440-41-7	CIN	0.005	QN
Cadmium	7440-43-9	CIN	0.005	ΩN
Cobalt	7440-48-4	QN	0.005	ΩN
Copper	7440-50-8	QΝ	0.010	ΩN
Lead	7439-92-1	ŒΝ	0.001	ΩN
Manganese	7439-96-5	QN.	0.005	Q
Mercury	7439-97-6	QN.	0.0002	ΩN
Nickel	7440-02-0	ŒN	0.01	QN
Selenium	7782-49-2	CIN	0.02	QN
Silver	7440-22-4	ΩN	0.005	QN
Thallium	7440-28-0	ΩN	0.0005	ΩN
Vanadium	7440-62-2	QN	0.005	ΩN
Zinc	7440-66-6	QN	0.02	ΩN
Cyanide	57-12-5	ND	0.01	QN
Chromium, total	7440-47-3	MD	0.015	QN
Hexavalent Chromium	18540-29-9	QN	0.02	QN
Trivalent Chromium	16065-83-1	É	0.00	CIN