DRAINAGE REPORT

Prepared for

Walter and Katherine Bostian 425 South Riverside Drive

> BLOCK 5408 LOT 17

NEPTUNE TOWNSHIP MONMOUTH COUNTY, NJ

Prepared by

JKR ENGINEERING AND PLANNING SERVICE, LLC 49 Nomoco Road – Freehold- NJ-07728 732-780-4108 jkr@jkrengineering.com

December 2023

Richard DiFolco, PE, PP NJ PE Lic. # 24343 NJ PP Lic.# 2606

Walter and Katherine Bostian 425 South Riverside Drive Block 5408 Lot 17 Neptune Twp. NJ Drainage Report JKR Engineering and Planning Service, LLC December 2023 Jage

TABLE OF CONTENTS

OVERVIEW	3
PROJECT LOCATION	3
PROJECT DESCRIPTION	3
EXISTING CONDITIONS	4
PROPOSED CONDITIONS	7
SUMMARY AND COMPARISON	7
SURFCE DRAINAGE	8
STORMWATER MANAGEMENT	8
FLOOD ZONES	8
CONCLUSION	9

10
11
12
13
14
15
16
17

 ${\rm Page} 2$

OVERVIEW

This report is submitted in support of a development application for Walter and Katherine Bostian for their property located at #425 South Riverside Drive in the Shark River Hills section of the Township. The property is known as Lot 17 in Block 5408 as shown on Sheet 54 of the Neptune Township tax map.

PROJECT LOCATION

The property is located in the R-2 Low Density Single-Family Residential Zone where single-family residential is a permitted use. The site has frontages on three streets: South Riverside Drive, Vernon Avenue and Tremont Drive. The surrounding area consists of single-family residential uses. The site is located in close proximity to the Shark River (tidal) and while the majority of the site is elevated above the 100 year flood elevation (FEMA Zone AE-Elev.10), the existing Township streets and right-of-way areas fronting the site, and open yard areas of the proposed residential lots vary from elevation 4 to elevation 10. All proposed structures are elevated above the 100 year flood level and no basements are proposed.

PROJECT DESCRIPTION

The 1.21 acre subject property is the site of a 50 year old residential estate containing a 7,000 square foot ranch dwelling, a 65 foot long outdoor pool and patio areas, and a full sized recreational basketball court. The site has frontage on three paved and improved Township streets, South Riverside Drive, Vernon Avenue and Tremont Drive and no new streets are proposed. The site is cleared, graded and contains open lawn areas and is not wooded. The owner/applicant proposes to demolish all existing structures and improvements currently at the site and subdivide the property into four lots, retaining the South Riverside Drive portion of the site for construction of his personal residence. Three other residential lots, which all front on existing streets, will be proposed for sale. No new municipal road improvements are required or proposed. Proposed site improvements will include curb repair at new driveway curb cuts and the planting of shade trees along the three street frontages. All new utilities will be placed underground.

EXISTING CONDITIONS

The existing developed site contains 19,030 square feet (0.437 acres) of impervious coverage comprised of roof area, patios, walkways, driveway and sport court. The soil type is Udorthents (HSG D). The existing motor vehicle surface consists of the driveway area (1,044 sq ft). The balance of the site is comprised of pervious graded lawn and yard areas and contains 33,470 square feet (0.768 acres). The quantity of site runoff generated from the site in the existing condition is not significant and can be approximated by the TR-55 method using a CN of 98 for the impervious areas and a CN of 80 for lawn areas. A time of concentration of 5 minutes is assumed for impervious areas and pervious areas. The updated July 2023 future rainfall intensity values are used.

https://www.nrcs.usda.gov/sites/default/files/2022-09/NJ%2024%20Hour%20Rainfall%20Data.pdf.

		N	EW JERSI	EY 24 HOU	R RAINFA	LL FREQU	JENCY DA	TA
				Rainfall a	mounts in	Inches		
County	/	1 year	2 year	5 year	10 year	25 year	50 year	100 yea
Atlanti	C	2.72	3.31	4.30	5.16	6.46	7.61	8.90
Berger	۲	2.75	3.34	4.27	5.07	6.28	7.32	8.47
Burling	gton .	2.77	3.36	4.34	5.18	6.45	7.56	8.81
Camde	en	2.73	3.31	4.25	5.06	6.28	7.34	8.52
Cape I	May	2.67	3.25	4.22	5.07	6.34	7.47	8.73
Cumbe	erland	2.69	3.27	4.25	5.09	6.37	7.49	8.76
Essex		2.85	3.44	4.40	5.22	6.44	7.49	8.66
Glouce	ester	2.71	3.29	4.24	5.05	6.29	7.36	8.55
Hudso	n	2.73	3.31	4.23	5.02	6.19	7.20	8.31
Hunter	don	2.80	3.38	4.26	5.00	6.09	7.02	8.03
Merce	r	2.74	3.31	4.23	5.01	6.19	7.20	8.33
Middle	SAY	2.76	3 35	4 30	5 12	6.36	7 43	8.63
Monm	outh	2.79	3.38	4.38	5.23	6.53	7.66	8.94
Morris		2.94	3.54	4.47	5.24	6.37	7.32	8.35
Ocean	1	2.81	3.42	4.45	5.33	6.68	7.87	9.20
Passai	ic	2.87	3.47	4.42	5.23	6.43	7.47	8.62
Salem		2.69	3.26	4.20	5.00	6.22	7.28	8.45
Somer	set	2.76	3.34	4.25	5.01	6.15	7.13	8.21
Susse:	x	2.68	3.22	4.02	4.70	5.72	6.60	7.58
Union		2.80	3.39	4.35	5.17	6.42	7.49	8.69
Warren		0.70	2.24	440	4.00	E 00	6 00	7 00

Table 5-1: County-Specific, New Jersey 24-Hour Rainfall Frequency Data

ii. N.J.A.C. 7:8-5.7(c)2 and N.J.A.C. 7:8-5.7(d)2 both allow an alternative to calculating the current and projected rainfall precipitation depths by using separate rainfall totals for each county. The 24-hour county rainfall amount provided by NRCS is duplicated here and can be found online at:

b. N.J.A.C.7:8-5.7(c) requires the precipitation depths of the current 2-, 10- and 100-year storm events be determined by multiplying the NOAA rainfall data with the current precipitation adjustment factors in Table 5-5 at N.J.A.C.7:8-5.7(c)2. N.J.A.C.7:8-5.7(d) requires the precipitation depths of the projected 2-, 10- and 100-year storm events be determined by multiplying the NOAA rainfall data with the future precipitation change factors in Table 5-6 at N.J.A.C.7:8-5.7(d). Table 5-5 and Table 5-6 from the Rules are reproduced below.

	Current Precipitation Adjustment Factors						
County	2-year Design Storm	10-year Design Storm	100-year Design Storm				
Atlantic	1.01	1.02	1.03				
Bergen	1.01	1.03	1.06				
Burlington	0.99	1.01	1.04				
Camden	1.03	1.04	1.05				
Cape May	1.03	1.03	1.04				
Cumberland	1.03	1.03	1.01				
Essex	1.01	1.03	1.06				
Gloucester	1.05	1.06	1.06				
Hudson	1.03	1.05	1.09				
Hunterdon	1.02	1.05	1.13				
Mercer	1.01	1.02	1.04				
Middlesex	1.00	1.01	1.03				
Monmouth	1.00	1.01	1.02				
Morris	1.01	1.03	1.06				
Ocean	1.00	1.01	1.03				
Passaic	1.00	1.02	1.05				
Salem	1.02	1.03	1.03				
Somerset	1.00	1.03	1.09				
Sussex	1.03	1.04	1.07				
Union	1.01	1.03	1.06				
Warren	1.02	1.07	1.15				

Current Precipitation Adjustment Factors at N.J.A.C. 7:8-5.7(c) as Table 5-5

	Future Precipitation Change Factors					
County	2-year Design Storm	10-year Design Storm	100-year Design Storm			
Atlantic	1.22	1.24	1.39			
Bergen	1.20	1.23	1.37			
Burlington	1.17	1.18	1.32			
Camden	1.18	1.22	1.39			
Cape May	1.21	1.24	1.32			
Cumberland	1.20	1.21	1.39			
Essex	1.19	1.22	1.33			
Gloucester	1.19	1.23	1.41			
Hudson	1.19	1.19	1.23			
Hunterdon	1.19	1.23	1.42			
Mercer	1.16	1.17	1.36			
Middlesex	1.19	1.21	1.33			
Monmouth	1.19	1.19	1.26			
Morris	1.23	1.28	1.46			
Ocean	1.18	1.19	1.24			
Passaic	1.21	1.27	1.50			
Salem	1.20	1.23	1.32			
Somerset	1.19	1.24	1.48			
Sussex	1.24	1.29	1.50			
Union	1.20	1.23	1.35			
Warren	1.20	1.25	1.37			

Future Precipitation Change Factors at N.J.A.C. 7:8-5.7(d) as Table 5-6

 $2 \text{ yr} = 3.38 \times 1.0 \times 1.19 = 4.02 \qquad 10 \text{ yr} = 5.23 \times 1.01 \times 1.19 = 6.29 \qquad 100 \text{ yr} = 8.94 \times 1.02 \times 1.26 = 11.49$

The following runoff rates/volumes from impervious areas and pervious areas (calculated separately and summed) are distributed across the site and reach the existing Township storm sewer system:

2 yr = 1.048 cfs/11,627 cf 10 yr = 1.787 cfs/20,669 cf 100 yr = 3.470 cfs/42,384 cf

Surface runoff is presently directed to the three frontage streets via sheet flow where the Township has an existing storm water collection system with street inlets located at the corner of Vernon Avenue and South Riverside Drive, Tremont Drive and South Riverside Drive and along Vernon Avenue opposite Sheldon Avenue.

Page **O**

PROPOSED CONDITIONS

The proposed developed site contains 17,703 square feet (0.406 acres) of impervious coverage comprised of roof area, patios, walkways and driveways. There is a decrease in the amount of impervious coverage when compared to the existing condition. The soil type is Udorthents (HSG D). The proposed motor vehicle surface consists of the four driveway areas (3,517 sq ft). There is less than ¹/₄ acre of new motor vehicle surface being created. The balance of the site is comprised of pervious graded lawn and yard areas and contains 34,797 square feet (0.799 acres). The quantity of site runoff generated from the site in the proposed condition is not significant and can be approximated by the TR-55 method using a CN of 98 for the impervious areas and a CN of 80 for lawn areas. A time of concentration of 5 minutes is assumed for impervious areas and pervious areas. The updated July 2023 future rainfall intensity values are used.

$$2 \text{ yr} = 3.38 \times 1.0 \times 1.19 = 4.02$$
 10 yr = $5.23 \times 1.01 \times 1.19 = 6.29$ 100 yr = $8.94 \times 1.02 \times 1.26 = 11.49$

The following runoff rates/volumes from impervious areas (calculated separately and summed) are distributed across the site and reach the existing Township storm sewer system:

2 yr = 1.039 cfs/11,435 cf 10 yr = 1.779 cfs/20,445 cf 100 yr = 3.465 cfs/42,128 cf

Surface runoff will be directed to the three frontage streets via sheet flow where the Township has an existing storm water collection system with street inlets located at the corner of Vernon Avenue and South Riverside Drive, Tremont Drive and South Riverside Drive and along Vernon Avenue opposite Sheldon Avenue.

SUMMARY AND COMPARISON

The existing vs. proposed flow rates and volumes are almost identical and show that no detrimental drainage impacts from the proposed development would be expected. The small scale of development, proximity to the final discharge point and with no new streets being constructed, also supports this conclusion.

SURFACE DRAINAGE

The site surface drainage sheet flows to all three fronting streets and is collected by the Township existing storm sewer system prior to being discharged under South Riverside Drive to the Shark River. The application notes that the developer will jet and clean the adjacent storm sewer system located at Tremont Drive and South Riverside Drive to insure optimum performance of the existing storm sewer system. The existing drainage patterns of the site will be maintained and the proposed grading plan directs surface water from the residential lots via sheet flow to the existing streets, no new storm drainage piping is proposed. No impacts to the Township drainage system are anticipated.

STORMWATER MANAGEMENT

The proposed development does not meet the site disturbance or impervious cover criteria of a major development as relates to storm water therefor the storm water management regulations do not apply to this site.

The proposed development is not a Major Development project, is located in Metropolitan Planning Area – PA 1 and is not required to provide groundwater recharge, however recharge will be provided through the infiltration provided over the lawn and landscaped areas.

FLOOD ZONES

The site is located close to the Shark River. According to FEMA MAP 34025C0341G (effective 6/15/2022) the associated flood zones on the site are Zone X, Zone AE 10, and Zone AE 11. The Shark River is designated as Zone VE 12. Proposed dwellings are elevated a minimum of one foot above the designated flood zone elevation. Proposed first floor elevations are set at elevation 14.25+ (NAVD88). No basements are proposed. Flood vents will be installed within the crawl spaces for each dwelling.

The site will require a CAFRA permit for the subdivision of property and construction of the four dwellings. An application will be filed with the NJDEP for this approval.

CONCLUSION

In summary, the proposed residential development is of small scale, is maintaining the existing local drainage pattern, is supported by an existing storm drain system and will result in a 'de minimis' drainage impact on the site and the surrounding area.

APPENDIX

Aerial Map

Tax Map

Soil Map

Flood Map

State Planning Area Map

Existing Drainage Map

Proposed Drainage Map

AERIAL MAP - 425 SOUTH RIVERSIDE DRIVE

SOURCE: NEARMAP 2023

VIEW FROM NORTH

Page 11

TAX MAP - BLOCK 5408 LOT 17

SOURCE: SHEET 54 NEPTUNE TWP

Walter and Katherine Bostian 425 South Riverside Drive Block 5408 Lot 17 Neptune Twp. NJ Drainage Report JKR Engineering and Planning Service, LLC December 2023

 $P_{age}12$

SOIL MAP – UdaB Udorthents

SOURCE: USDA

Description of Udorthents

Setting

Landform: Low hills Down-slope shape: Linear Across-slope shape: Linear Parent material: Fill and/or disturbed original soil material

Typical profile

A - 0 to 12 inches: loam C - 12 to 72 inches: loamy sand

Properties and qualities

Slope: 0 to 8 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water supply, 0 to 60 inches: Moderate (about 6.7 inches)

FLOOD MAP

SOURCE: FEMA

STATE PLANNING AREA MAP

SOURCE: NJDEP-GEOMAP

Metropolitan Planning Area (PA 1)

Walter and Katherine Bostian 425 South Riverside Drive Block 5408 Lot 17 Neptune Twp. NJ Drainage Report JKR Engineering and Planning Service, LLC December 2023

Walter and Katherine Bostian 425 South Riverside Drive Block 5408 Lot 17 Neptune Twp. NJ Drainage Report JKR Engineering and Planning Service, LLC December 2023 $_{Page}17$

Hydrograph Return Period Recap Hydrafiow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd.	Hydrograph Inflow	ph Inflow Peal		Peak Outflow (cfs)						Hydrograph	
NO.	type (origin)	nyd(s)	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff			0.456			0.716			1.309	existing impervious
2	SCS Runoff			0.592			1.071			2.162	existing pervious
3	Combine	1, 2		1.048			1.787			3.470	existing condition
5	SCS Runoff			0.424			0.665			1.216	proposed impervious
6	SCS Runoff			0.615			1.115			2.249	proposed pervious
7	Combine	5, 6		1.039			1.779			3.465	<no description=""></no>
									<u> </u>		
Dra						منام سيبم			1 101		. 10/00/0000

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.456	1	778	5,945				existing impervious
2	SCS Runoff	0.592	1	780	5,682				existing pervious
3	Combine	1.048	1	780	11,627	1, 2			existing condition
5	SCS Runoff	0.424	1	778	5,524				proposed impervious
6	SCS Runoff	0.615	1	780	5,911				proposed pervious
7	Combine	1.039	1	780	11,435	5, 6			<no description=""></no>
J:\7	95 RIVER AV	E BELM/	AR\425 s	so riverside	e rRetuffrag	wriod: 2 Ye	ar	Wednesday	, 12 / 20 / 2023

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

existing impervious

Hydrograph type	= SCS Runoff	Peak discharge =	= 0.456 cfs
Storm frequency	= 2 yrs	Time to peak =	= 12.97 hrs
Time interval	= 1 min	Hyd. volume =	= 5,945 cuft
Drainage area	= 0.437 ac	Curve number =	= 98
Basin Slope	= 0.0 %	Hydraulic length =	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 4.02 in	Distribution =	= Custom
Storm duration	= J:\763 HOWELL RT 33 MALE	15003 paola: torade con	TRACTOR BUSINESS SIT

3

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

existing pervious

;
ť
BUSINESS SIT

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 3

existing condition

Hydrograph type Storm frequency	= Combine = 2 vrs	Peak discharge Time to peak	= 1.048 cfs = 13.00 brs
Time interval	= 1 min	Hyd. volume	= 11,627 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 1.205 ac

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

proposed impervious

Hydrograph type	= SCS Runoff	Peak discharge =	= 0.424 cfs
Storm frequency	= 2 yrs	Time to peak =	= 12.97 hrs
Time interval	= 1 min	Hyd. volume =	= 5,524 cuft
Drainage area	= 0.406 ac	Curve number =	= 98
Basin Slope	= 0.0 %	Hydraulic length =	= 0 ft
Tc method	= User	Time of conc. (Tc) =	= 5.00 min
Total precip.	= 4.02 in	Distribution =	= Custom
Storm duration	= J:\763 HOWELL RT 33 MALE	TSONSA DE DE CONS	TRACTOR BUSINESS SIT

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

proposed pervious

= SCS Runoff	Peak discharge =	0.615 cfs
= 2 yrs	Time to peak =	= 13.00 hrs
= 1 min	Hyd. volume =	5,911 cuft
= 0.799 ac	Curve number =	80
= 0.0 %	Hydraulic length =	• O ft
= User	Time of conc. (Tc) =	5.00 min
= 4.02 in	Distribution =	Custom
= J:\763 HOWELL RT 33 MALE	15008¢2602630t6RADE CON€	TRACTOR BUSINESS SIT
	= SCS Runoff = 2 yrs = 1 min = 0.799 ac = 0.0 % = User = 4.02 in = J:\763 HOWELL RT 33 MALE	SCS RunoffPeak discharge= 2 yrsTime to peak= 1 minHyd. volume= 0.799 acCurve number= 0.0 %Hydraulic length= UserTime of conc. (Tc)= 4.02 inDistribution= J:\763 HOWELL RT 33 MALE TSDaped actor

7

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

<no description>

Hydrograph type	= Combine	Peak discharge	= 1.039 cfs
Storm frequency	= 2 yrs	Time to peak	= 13.00 hrs
Time interval	= 1 min	Hyd. volume	= 11,435 cuft
Inflow hyds.	= 5, 6	Contrib. drain. area	= 1.205 ac
innow Hydo.	0, 0		1.200 00

8

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.716	1	778	9,505				existing impervious
2	SCS Runoff	1.071	1	780	11,163				existing pervious
3	Combine	1.787	1	780	20,669	1, 2			existing condition
5	SCS Runoff	0.665	1	778	8,831				proposed impervious
6	SCS Runoff	1.115	1	780	11,614				proposed pervious
7	Combine	1.779	1	780	20,445	5, 6			<no description=""></no>
J:\7	95 RIVER AV		 AR\425 s	so riversid	e nRetoffrig P	eriod: 10 Y	ear	Wednesday	/, 12 / 20 / 2023

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

existing impervious

Hydrograph type	= SCS Runoff	Peak discharge	= 0.716 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.97 hrs
Time interval	= 1 min	Hyd. volume	= 9,505 cuft
Drainage area	= 0.437 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 6.29 in	Distribution	= Custom
Storm duration	= J:\763 HOWELL RT 3	33 MALETSONS / 2002 200 TORADE C	ONFR&CTOR BUSINESS SIT

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

existing pervious

Hydrograph type	= SCS Runoff	Peak discharge	= 1.071 cfs
Storm frequency	= 10 yrs	Time to peak	= 13.00 hrs
Time interval	= 1 min	Hyd. volume	= 11,163 cuft
Drainage area	= 0.768 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 6.29 in	Distribution	= Custom
Storm duration	= J:\763 HOWELL RT	33 MALE TSONSA DE CO	ONTRACTOR BUSINESS SIT

11

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 3

existing condition

Hydrograph type	= Combine	Peak discharge	= 1.787 cfs
Time interval	= 10 yrs = 1 min	Hyd. volume	= 20,669 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 1.205 ac

12

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

proposed impervious

Hydrograph type =	= SCS Runoff	Peak discharge =	0.665 cfs
Storm frequency =	= 10 yrs	Time to peak =	12.97 hrs
Time interval	= 1 min	Hyd. volume =	8,831 cuft
Drainage area =	= 0.406 ac	Curve number =	98
Basin Slope =	= 0.0 %	Hydraulic length =	0 ft
Tc method =	= User	Time of conc. (Tc) =	5.00 min
Total precip. =	= 6.29 in	Distribution =	Custom
Storm duration =	= J:\763 HOWELL RT 33 MALE	TSDNA paolaat torade conf	TRACTOR BUSINESS SIT

13

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

proposed pervious

Hydrograph type =	= SCS Runoff	Peak discharge =	1.115 cfs
Storm frequency	= 10 yrs	Time to peak =	13.00 hrs
Time interval	= 1 min	Hyd. volume =	11,614 cuft
Drainage area	= 0.799 ac	Curve number =	80
Basin Slope :	= 0.0 %	Hydraulic length =	0 ft
Tc method =	= User	Time of conc. (Tc) =	5.00 min
Total precip.	= 6.29 in	Distribution =	Custom
Storm duration	= J:\763 HOWELL RT 33 MALE	TSDNA paolaat torade conf	TRACTOR BUSINESS SIT

Wednesday, 12 / 20 / 2023

14

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

<no description>

Hydrograph type	= Combine = 10 vrs	Peak discharge Time to peak	= 1.779 cfs = 13.00 brs
Time interval	= 1 min	Hyd. volume	= 20,445 cuft
Inflow hyds.	= 5,6	Contrib. drain. area	= 1.205 ac

Hydrograph Summary Report Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.309	1	778	17,669				existing impervious
2	SCS Runoff	2.162	1	780	24,715				existing pervious
3	Combine	3.470	1	780	42,384	1, 2			existing condition
5	SCS Runoff	1.216	1	778	16,415				proposed impervious
6	SCS Runoff	2.249	1	780	25,713				proposed pervious
7	Combine	3.465	1	780	42,128	5, 6			<no description=""></no>
1.\7					- Rephiffme	eriod: 100	Year	Wednesday	(12 / 20 / 2023

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 1

existing impervious

Hydrograph type =	SCS Runoff	Peak discharge =	1.309 cfs
Storm frequency =	= 100 yrs	Time to peak =	12.97 hrs
Time interval =	= 1 min	Hyd. volume =	17,669 cuft
Drainage area =	= 0.437 ac	Curve number =	98
Basin Slope =	= 0.0 %	Hydraulic length =	0 ft
Tc method =	= User	Time of conc. (Tc) =	5.00 min
Total precip. =	= 11.49 in	Distribution =	Custom
Storm duration =	= J:\763 HOWELL RT 33 MALE	TSDAS DED 2200 TERRADE CONFI	RECTOR BUSINESS SIT

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 2

existing pervious

= SCS Runoff	Peak discharge	= 2.162 cfs
= 100 yrs	Time to peak	= 13.00 hrs
= 1 min	Hyd. volume	= 24,715 cuft
= 0.768 ac	Curve number	= 80
= 0.0 %	Hydraulic length	= 0 ft
= User	Time of conc. (Tc)	= 5.00 min
= 11.49 in	Distribution	= Custom
= J:\763 HOWELL RT 33 MALE	TSONSA DE DE CON	HTR284CTOR BUSINESS SIT
	 SCS Runoff 100 yrs 1 min 0.768 ac 0.0 % User 11.49 in J:\763 HOWELL RT 33 MALE 	= SCS RunoffPeak discharge= 100 yrsTime to peak= 1 minHyd. volume= 0.768 acCurve number= 0.0 %Hydraulic length= UserTime of conc. (Tc)= 11.49 inDistribution= J:\763 HOWELL RT 33 MALE TSDA 2012 CERADE CON

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 3

existing condition

Hydrograph type Storm frequency	= Combine	Peak discharge	= 3.470 cfs
Time interval	= 1 min	Hyd. volume	= 42,384 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 1.205 ac

19

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 5

proposed impervious

Hydrograph type	= SCS Runoff	Peak discharge	= 1.216 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.97 hrs
Time interval	= 1 min	Hyd. volume	= 16,415 cuft
Drainage area	= 0.406 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 11.49 in	Distribution	= Custom
Storm duration	= J:\763 HOWELL RT	33 MALETSONSA DE CO	ONFR&CTOR BUSINESS SIT

20

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 6

proposed pervious

Hydrograph type	= SCS Runoff	Peak discharge	= 2.249 cfs
Storm frequency	= 100 yrs	Time to peak	= 13.00 hrs
Time interval	= 1 min	Hyd. volume	= 25,713 cuft
Drainage area	= 0.799 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 11.49 in	Distribution	= Custom
Storm duration	= J:\763 HOWELL RT	33 MALETSONS (2002) 2002 2002 2002 2002 2002 2002 20	ONFR2&CTOR BUSINESS SIT

21

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Hyd. No. 7

<no description>

s uft

22

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Return Period	Intensity-Duration-Frequency Equation Coefficients (FHA)								
(Yrs)	В	D	E	(N/A)					
1	51.6066	12.5000	0.8820						
2	60.4231	12.7000	0.8718						
3	0.0000	0.0000	0.0000						
5	65.5675	12.8000	0.8385						
10	66.3444	12.6000	0.8081						
25	58.0444	11.1000	0.7423						
50	54.6664	10.4000	0.7036						
100	48.3757	9.1000	0.6533						

File name: idf data canaan church.IDF

Intensity = B / (Tc + D)^E

Intensity Values (in/hr)											
5 min	10	15	20	25	30	35	40	45	50	55	60
4.13	3.31	2.77	2.39	2.11	1.89	1.71	1.57	1.45	1.35	1.26	1.18
4.93	3.97	3.34	2.89	2.55	2.29	2.08	1.91	1.76	1.64	1.53	1.44
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.86	4.76	4.03	3.51	3.12	2.81	2.56	2.36	2.18	2.04	1.91	1.80
6.54	5.34	4.54	3.97	3.54	3.20	2.93	2.70	2.51	2.34	2.20	2.08
7.38	6.04	5.15	4.53	4.05	3.68	3.38	3.13	2.92	2.74	2.59	2.45
7.98	6.55	5.61	4.95	4.44	4.05	3.73	3.47	3.24	3.05	2.89	2.74
8.59	7.04	6.05	5.35	4.82	4.41	4.08	3.80	3.57	3.37	3.19	3.04
	5 min 4.13 4.93 0.00 5.86 6.54 7.38 7.98 8.59	5 min 10 4.13 3.31 4.93 3.97 0.00 0.00 5.86 4.76 6.54 5.34 7.38 6.04 7.98 6.55 8.59 7.04	5 min 10 15 4.13 3.31 2.77 4.93 3.97 3.34 0.00 0.00 0.00 5.86 4.76 4.03 6.54 5.34 4.54 7.38 6.04 5.15 7.98 6.55 5.61 8.59 7.04 6.05	5 min 10 15 20 4.13 3.31 2.77 2.39 4.93 3.97 3.34 2.89 0.00 0.00 0.00 0.00 5.86 4.76 4.03 3.51 6.54 5.34 4.54 3.97 7.38 6.04 5.15 4.53 7.98 6.55 5.61 4.95 8.59 7.04 6.05 5.35	5 min 10 15 20 25 4.13 3.31 2.77 2.39 2.11 4.93 3.97 3.34 2.89 2.55 0.00 0.00 0.00 0.00 0.00 5.86 4.76 4.03 3.51 3.12 6.54 5.34 4.54 3.97 3.54 7.38 6.04 5.15 4.53 4.05 7.98 6.55 5.61 4.95 4.82	Intensity Values 5 min 10 15 20 25 30 4.13 3.31 2.77 2.39 2.11 1.89 4.93 3.97 3.34 2.89 2.55 2.29 0.00 0.00 0.00 0.00 0.00 0.00 5.86 4.76 4.03 3.51 3.12 2.81 6.54 5.34 4.54 3.97 3.54 3.20 7.38 6.04 5.15 4.53 4.05 3.68 7.98 6.55 5.61 4.95 4.44 4.05 8.59 7.04 6.05 5.35 4.82 4.41	Intensity Values (in/hr) 5 min 10 15 20 25 30 35 4.13 3.31 2.77 2.39 2.11 1.89 1.71 4.93 3.97 3.34 2.89 2.55 2.29 2.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.86 4.76 4.03 3.51 3.12 2.81 2.56 6.54 5.34 4.54 3.97 3.54 3.20 2.93 7.38 6.04 5.15 4.53 4.05 3.68 3.38 7.98 6.55 5.61 4.95 4.44 4.05 3.73 8.59 7.04 6.05 5.35 4.82 4.41 4.08	Intensity Values (in/hr)5 min101520253035404.133.312.772.392.111.891.711.574.933.973.342.892.552.292.081.910.000.000.000.000.000.000.000.005.864.764.033.513.122.812.562.366.545.344.543.973.543.202.932.707.386.045.154.534.053.683.383.137.986.555.614.954.444.053.733.478.597.046.055.354.824.414.083.80	Intensity Values (in/hr)5 min10152025303540454.133.312.772.392.111.891.711.571.454.933.973.342.892.552.292.081.911.760.000.000.000.000.000.000.000.000.005.864.764.033.513.122.812.562.362.186.545.344.543.973.543.202.932.702.517.386.045.154.534.053.683.383.132.927.986.555.614.954.444.053.733.473.248.597.046.055.354.824.414.083.803.57	Intensity Values (in/hr)5 min1015202530354045504.133.312.772.392.111.891.711.571.451.354.933.973.342.892.552.292.081.911.761.640.000.000.000.000.000.000.000.000.000.005.864.764.033.513.122.812.562.362.182.046.545.344.543.973.543.202.932.702.512.347.386.045.154.534.053.683.383.132.922.747.986.555.614.954.444.053.733.473.243.058.597.046.055.354.824.414.083.803.573.37	Intensity Values (in/hr)5 min101520253035404550554.133.312.772.392.111.891.711.571.451.351.264.933.973.342.892.552.292.081.911.761.641.530.000.000.000.000.000.000.000.000.000.005.864.764.033.513.122.812.562.362.182.041.916.545.344.543.973.543.202.932.702.512.342.207.386.045.154.534.053.683.383.132.922.742.597.986.555.614.954.444.053.733.473.243.052.898.597.046.055.354.824.414.083.803.573.373.19

Tc = time in minutes. Values may exceed 60.

		Rainfall Precipitation Table (in)								
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr		
SCS 24-hour	0.00	4.02	0.00	0.00	6.24	6.60	0.00	11.29		
SCS 6-Hr	0.00	2.44	0.00	0.00	3.62	4.38	0.00	5.71		
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
Custom	1.25	4.02	0.00	0.00	6.29	6.60	0.00	11.49		

Precip. file name: J:\858 walt shark river hills\new rainfall rates 2023.pcp